期刊文献+

Hilbert C*-模中g-框架的一些性质 被引量:1

Some Properties of g-Frames in Hilbert C*-Modules
原文传递
导出
摘要 本文运用算子理论方法,给出Hilbert C*-模中g-框架的一些性质并讨论g-框架的扰动性,得到g-框架的和的一些刻画,所得结果推广和改进了已有的结果. In this paper, utilizing the method of operator theory, some properties and perturbation of g-franes in Hilbert C*-modules are discussed, some characterizations of sums of g-frames in Hilbert C*-modules are obtained. Moreover, it is shown that these results extend and improve the existing results.
作者 姚喜妍
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2011年第1期1-8,共8页 Acta Mathematica Sinica:Chinese Series
基金 山西省重点学科基金项目(20091028) 教育厅基金项目(304) 运城学院科研项目(2009003)
关键词 HILBERT C*-模 G-框架 g-框架算子 Hilbert C*-module g-frame g-frame operator
  • 相关文献

参考文献18

  • 1肖祥春,朱玉灿,曾晓明.Hilbert空间中g-Parseval框架的一些性质[J].数学学报(中文版),2008,51(6):1143-1150. 被引量:9
  • 2Gabor D.Theory of communictions. Jour.Inst.Elec.Engrg . 1946
  • 3Frichtinger H.G,Grchenig K.Theory and Practice Irregular Sampling. Wavelets:Mathematics and Applications . 1994
  • 4Dudey Ward N.E,Partington J.R.A construction of rational wavelets and frames in Hardy-Sobolev space with applications to system modelling. The SIAM Journal on Control and Optimization . 1998
  • 5Holmes R.B,Paulsen V.I.Optimal frames for erasures. Linear Algebra and Its Applications . 2004
  • 6Sun W.Stability of g-frames. Journal of Mathematical Analysis and Applications . 2007
  • 7Khosravi A,Khosravi B.Fusion frames and g-frames in Hilbert C*-modules. Int.J.Wavelets Multiresolut. Inf.Process . 2008
  • 8Xiao X.C,Zeng X.M.Some properties of g-frames in Hilbert C*-modules. Journal of Mathematical Analysis and Applications . 2010
  • 9Zhu Y.C.Characterization of g-frames and g-Riesz bases in Hilbert spaces. Acta Mathematica Scientia . 2008
  • 10Strohmer,T.,Jr,Heath,R. W.Grassmannian frames with applications to coding and communications. Applied and Computational Harmonic Analysis . 2003

二级参考文献17

  • 1Duffin R. J., Schaeffer A. C., A class of nonharmonic Fourier series, Trans. Math. Soc., 1952, 72: 341-366.
  • 2Daubechies I., Grossmann A., Meyer Y., Painless nonorthogonal expansions, J. Math. Phys., 1986, 27: 271-1283.
  • 3Casazza P. G., The art of frame theory, Taiwan Residents J. of Math., 2000, 4(2): 129-201.
  • 4Christensen O., An introduction to frames and Riesz bases, Boston: Birkhauser, 2003.
  • 5Yang D. Y., zhou x. w., Yuan Z. Z., Frame wavelets with compact supports for L^2(Rn), Acta Mathematica Sinica, English Series, 2007, 23(2): 349-356.
  • 6Zhu Y. C., q-Besselian frames in Banach spaces, Acta Mathematica Sinica, English Series, 2007, 23(9): 1707-1718.
  • 7Li C. Y., Cao H. X., Xd frames and Riesz bases for a Banach space, Acta Mathematica Sinica, Chinese Series, 2006, 49(6): 1361-1366.
  • 8Mallat S., A wavelet tour of signal processing (Second Edition), San Diego: Academic Press, 2000.
  • 9Feichtinger H. G., Grochenig K., Theory and practice of irregular sampling, in: J. J. Benedetto, M. Frazier (Eds.), Wavelets: Mathematics and Applications, Boca Raton: CRC Press. 1994, 305-363.
  • 10Dudey Ward N. E., Partington J. R., A construction of rational wavelets and frames in Hardy-Sobolev space with applications to system modelling, SIAM J. Control Optim., 1998, 36:654-679.

共引文献8

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部