摘要
An Inx Ga1_xN/lnN quantum-dot intermediate-band solar cell is calculated by means of solving the Schrodinger equation according to the Kronig-Penney model. Based on particular assumptions, the power conversion efficiency is worked out. The results reveal that the InxGa1- xN/InN quantum-dot intermediate-band solar cell manifests much larger power conversion efficiency than that of p-n junction solar cells, and the power conversion efficiency strongly depends on the size of the quantum dot and the interdot distance.
An Inx Ga1_xN/lnN quantum-dot intermediate-band solar cell is calculated by means of solving the Schrodinger equation according to the Kronig-Penney model. Based on particular assumptions, the power conversion efficiency is worked out. The results reveal that the InxGa1- xN/InN quantum-dot intermediate-band solar cell manifests much larger power conversion efficiency than that of p-n junction solar cells, and the power conversion efficiency strongly depends on the size of the quantum dot and the interdot distance.