期刊文献+

一种F-scores和SVM结合的客户分类方法

A Method Combined of Support Vector Machine and F-scores for Customer Classification
下载PDF
导出
摘要 为了克服现有客户分类方法在假设前提、准确度、泛化能力等方面的不足,提出了一种F-scores和SVM算法相结合的客户分类方法,并把该方法应用到银行信用卡客户分类问题中予以验证。实证分析表明:该方法最终的模型验证准确率可达95%以上,学习和分类能力良好。 A method combined of F-scores and support vector machine for customer classification was proposed, which can overcome the shortages of the existing customer classification method such as strict hypothesis, poor generalization ability, low prediction accuracy and low learning rate etc., and was applied to the problem of bank credit card customer classification. Empirical results show the validation accuracies of the final model can achieve 95% or more, which concludes that learning and generalization abilities of this model are excellent.
出处 《计算机系统应用》 2011年第1期197-200,共4页 Computer Systems & Applications
关键词 SVM F-scores 属性选择 客户分类 support vector machine F-scores attribute selection customer classification
  • 相关文献

参考文献10

二级参考文献42

  • 1杨立才,李佰敏,李光林,贾磊.脑-机接口技术综述[J].电子学报,2005,33(7):1234-1241. 被引量:68
  • 2李晓宇,张新峰,沈兰荪.支持向量机(SVM)的研究进展[J].测控技术,2006,25(5):7-12. 被引量:45
  • 3Vapnik V.The nature of statistical learning theory[M].New York: Springer-Verlag, 1995.
  • 4Burges C J C.A tutorial on support vector machines for pattern reeognition[J].Data Mining and Knowledge Disvovery,1998,2:121-167.
  • 5Burges B C J C,Smola A J.Advances in kernel methods-support vector leaming[M].Cambridge,MA:MIT Press,1999.
  • 6Chen Yi-wei,Lin Chih-jen.Combining SVMs with various feature selection strategies [EB/OL]. (2001 ).http ://www.esie.ntu.edu.tw/-ejlird libsvmtools/#4.
  • 7Machine learning database[EB/OL].http://archive.ics.uci.edu/ml/ machine-learning-databases/iris/bezdek-Iris.data.
  • 8Xu R,Wunsch D.Survey of clustering algorithms[J].IEEE Trans on Neural Networks,2005.
  • 9Keerthi S S, Gilbert E G.Convergence of a generalized SMO algorithm for SVM classifier design[J].Machine Learning,2002,46 ( 1 ) : 351-360.
  • 10LEE M C.Using support vector machine with a hybrid feature selection method to the stock trend prediction[J].Expert Systems with Applications,2009,36(8):10896-10904.

共引文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部