期刊文献+

WSN中基于分布式机器学习的异常检测仿真研究 被引量:13

Simulation Study of Anomaly Detection Based on Distributed Machine Learning for WSN
下载PDF
导出
摘要 安全问题是无线传感器网络应用的关键问题之一。设计了一种基于分布式机器学习的异常检测方案。该方案利用K最近邻算法对传感器网络节点进行分簇,时簇内节点的异常检测采用贝叶斯分类算法,对簇头节点的异常检测采用基于平均概率的方法。利用网络仿真工具NS2构建了入侵检测规则、模拟了网络攻击场景,在此基础上,通过仿真评估了方案的检测率、平均检测率、误检率和平均误检率等性能。仿真实验结果表明,该方案与当前典型的无线传感器网络入侵检测方案相比具有较高的检测率和较低的误检率。 Security is one of the most important challenges in wireless sensor network (WSN) applications. A Distributed Machine Learning (DML) based anomaly detection scheme was proposed and designed, where a new clustering approach was presented by using the K nearest neighbor algorithm, Bayesian classification algorithm was used to detect anomaly nodes in inter-cluster, the anomaly detection of cluster-head nodes was detected by using average probability approach. By using network simulation tool NS2, intrusion detection rules were developed, network attack traffic was generated and simulated. And based on this, its detection rate, average detection rate, false positive rate and average false positive rate were evaluated. Simulation results demonstrate that the scheme achieves higher accuracy rate of detection and lower false positive rate than the current important intrusion detection schemes of WSN.
出处 《系统仿真学报》 CAS CSCD 北大核心 2011年第1期181-187,共7页 Journal of System Simulation
基金 国家自然科学基金(60573127 60773012) 教育部创新团队(IRT0661)
关键词 无线传感器网络 分布式机器学习 K-最近邻分簇 贝叶斯分类 异常检测 网络仿真 WSN DML K-nearest neighbor clustering Bayesian classification anomaly detection network simulation
  • 相关文献

参考文献5

二级参考文献217

共引文献495

同被引文献123

  • 1杨新旭,王长山,王东琦,郑丽娜.基于隐马尔可夫模型的入侵检测系统[J].计算机工程与应用,2005,41(12):149-151. 被引量:9
  • 2陶砚蕴,徐萃华,林家骏.无线传感器网络的安全性研究[J].计算机安全,2007(4):8-13. 被引量:3
  • 3周贤伟,王培,覃伯平,申吉红.一种无线传感器网络异常检测技术研究[J].传感技术学报,2007,20(8):1870-1874. 被引量:13
  • 4裴庆祺,沈玉龙,马建峰.无线传感器网络安全技术综述[J].通信学报,2007,28(8):113-122. 被引量:94
  • 5杨庚,陈伟,曹晓梅.无线传感器网络安全[M].北京:科学出版社,2010.
  • 6Chris Karlof, David Wagner. Secure routing in wireless sensor networks: attacks and countermeasures[C]//2003 IEEE International Workshop on. New York: IEEE,2003:113-127.
  • 7许金红.无线传感器网络网络中恶意节点的检测和定位策略研究[D]:[硕士学位论文].长沙:中南大学,2011.
  • 8Sophia Kaplantzis, Alistair Shilton, Nallasamy Ma ni, et al. Detecting selective forwarding attacks in wireless sensor networks using support vector machines[J]. ISSNIP,2007,10(3) :335-340.
  • 9C E Loo, M Y Ng, C Leckie, et al. Intrusion de-tection for routing attacks in sensor networks[J]. International Journal of Distributed Sensor Net- works,2006,2(4) ..313-332.
  • 10R Roman, J Zhou, J Lopez. Applying intrusion detection systems to wireless sensor networks [C]// CCNC 2006.. Proceeding of the 3rd 1EEE Consumer Communications and Networking Conference. NJ.. IEEE, 2006: 640-644.

引证文献13

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部