摘要
研究了一类具有双时滞的SEIRS传染病模型,利用对模型子系统的分析,得到了疾病灭绝与否的基本再生数,给出了无病平衡点的全局吸引性及地方病平衡点稳定性的存在条件,并证明了疾病的持久性.
In this paper,a disease transmission model of SEIRS type with two delays is studied.A basic reproductive number which determines the outcome of the infectious disease is found by analysis of the subsystem of the model,the existence conditions with the global attractive of the disease free equilibrium and the stabiUty of the endemic equilibrium is given, and the persistent of the disease is proved.
出处
《数学的实践与认识》
CSCD
北大核心
2010年第22期135-142,共8页
Mathematics in Practice and Theory
基金
黑龙江省教育厅科学技术研究项目(11531426)