期刊文献+

基于Nearest-Biclusters协作过滤技术的效用图结构学习算法 被引量:2

An Algorithms for Learning the Structure of Utility Graph Based on Nearest-Biclusters Collaborative Filtering
下载PDF
导出
摘要 在多议题协商研究中,议题之间的依赖关系增加了协商Agent效用函数的复杂性,从而使得多议题协商变得更加困难.基于效用图的多议题依赖协商模型是体现议题间依赖关系的多议题协商模型.在该协商模型中,协商双方仅需要较少的协商步数就能够找到满足Pareto效率的协商结局.如何有效地学习买方Agent的效用图结构是该协商模型的关键.文中基于Nearest-Biclusters协作过滤技术的思想提出了一种新的效用图结构学习算法(NBCFL算法).该算法首先利用Nearest-Biclusters协作过滤技术发现买方偏好的局部匹配特性,提取与当前买方Agent类型相同的买方Agent所产生的协商历史记录,然后通过计算各议题间的依赖度学习买方Agent的效用图结构.实验表明在参与协商的买方Agent类型不同的条件下,NBCFL算法比IBCFL算法能更好地学习买方Agent的效用图结构. In the research of multi-issue negotiation,the interdependencies between issues greatly complicates the negotiation agents' utility functions,so this makes negotiation more difficultly.The multi-issue negotiation model based on Utility Graph is the multi-issue dependence negotiation model which considers interdependencies between issues.The negotiants need a few number of negotiation steps to reach Pareto-efficient agreements in the negotiation model.The key problem of the negotiation model is how to learn the structure of Utility Graph effectively.This paper proposes a new algorithm for learning the structure of Utility Graph based on Nearest-Biclusters Collaborative Filtering(NBCFL).Firstly,the algorithm takes advantage of the trait that Nearest-Biclusters Collaborative Filtering could detect partial matching of buyers' preferences,and collects the negotiation data which were produced by buyer that is the same class with active buyer.Secondly,it retrieves the structure of Utility Graph using the degree of interdependencies between issues.The experiments show that NBCFL algorithm can learn the structure of Utility Graph more effectively than IBCFL algorithm on condition that buyers from different classes of buyers.
作者 王黎明 李琨
出处 《计算机学报》 EI CSCD 北大核心 2010年第12期2291-2299,共9页 Chinese Journal of Computers
关键词 效用图 多议题协商 协作过滤 双向聚类 utility graph multi-issue negotiation collaborative filtering biclustering
  • 相关文献

参考文献16

  • 1Faratin P.Automated service negotiation between autonomous computational agents[Ph.D.dissertation].Department of Electronic Engineer Queen Mary & Westfield College,University of London,London,2000.
  • 2Coehoorn R M,Jennings N R.Learning an opponent's preferences to make effective multi-issue negotiation tradeoffs//Proceedings of the 6th International Conference on E-Commerce.Delft,2004:59-68.
  • 3王黎明,黄厚宽,柴玉梅.基于信任和K臂赌博机问题选择多问题协商对象[J].软件学报,2006,17(12):2537-2546. 被引量:14
  • 4王黎明,黄厚宽.一个基于多阶段的多Agent多问题协商框架[J].计算机研究与发展,2005,42(11):1849-1855. 被引量:16
  • 5王黎明,黄厚宽.基于主Agent信念修正的推测计算及其资源协商[J].软件学报,2005,16(11):1920-1928. 被引量:4
  • 6Klein M,Faratin P,Sayama H et al.Negotiating complex contracts.Group Decision and Negotiation,2003,12(2):111-125.
  • 7Takayuki Ito,Klein Mark,Hattori,Hiromitsu.An auction-based negotiation protocol for agents with nonlinear utility functions.MIT Sloan School of Management,Cambridge,Massachusetts,USA,Research Paper:No.4597-06,2006.
  • 8Takayuki Ito,Klein Mark.A multi-issue negotiation protocol among competitive agents and its extension to a nonlinear utility negotiation protocol//Proceedings of the 5th International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS06).New York,USA:ACM Press,2006:435-437.
  • 9Lai Guoming,Li Cuihong,Sycara Katia.Efficient multi-attribute negotiation with incomplete information.Group Decision and Negotiation,2006,15(5):511-528.
  • 10Somefun Koye,Klos Tomas B,Poutré Han La.Online learning of aggregate knowledge about nonlinear preferences applied to negotiating prices and bundles//Proceedings of the 6th International Conference on Electronic Commerce (ICEC'04).New York,USA:ACM Press,2004:361-370.

二级参考文献24

  • 1郭庆,陈纯.基于整合效用的多议题协商优化[J].软件学报,2004,15(5):706-711. 被引量:27
  • 2A. R. Lomuscio, M. Wooldridge, N. R. Jennings. A classification scheme for negotiation in electronic commerce. In:F. Dignum, C. Sierra, eds. Agent-Mediated Electronic Commerce: A European Perspective. New York: SpringerVerlag, 2000. 19~33.
  • 3P. Faratin, C. Sierra, R. N. Jennings. Negotiation decision functions for autonomous agents. Robotics and Autonomous Systems, 1998, 24(3): 159~ 182.
  • 4Wang Kung-Jeng, Chou Chung-How. Evaluating NDF-based negotiation mechanism within an agent-based environment.Robotics and Autonomous Systems, 2003, 43(1): 1~27.
  • 5S. S. Fatima, M. Wooldridge, N. R. Jennings. Multi-issue negotiation under time constraints. The 1st Int'l Joint Conf.Autonomous Agents and Multi-Agent Systems (AAMAS' 02),Bologna, Italy, 2002.
  • 6D. Zeng, K. Sycara. Benefits of learning in negotiation. The 14th National Conf. Artificial Intelligence and 9th Innovative Applications of Artificial Intelligence Conf. (AAAI-97/IAAI-97),Rhode Island, 1997.
  • 7S. S. Fatima, M. Wooldridge, N. R. Jennings. An agendabased framework for multi-issue negotiation. Artificial Intelligence, 2004, 152(1): 1~45.
  • 8R. Inderst. Multi-issue bargaining with endogenous agenda.Games and Economic Behavior, 2000, 30(1): 64~82.
  • 9J. Ueyama, E. R. M. Madeira. An automated negotiation model for electronic commerce. The 5th Int'l Symposium on Autonomous Decentralized Systems, Dallas, 2001.
  • 10S. S. Fatima, M. Wooldridge, N. R. Jennings. Optimal negotiation strategies for agents with incomplete information.ATAL-2001, Seattle, USA, 2001.

共引文献25

同被引文献26

  • 1王黎明,黄厚宽,柴玉梅.推测计算中基于进程约简的资源协商算法[J].模式识别与人工智能,2005,18(3):273-280. 被引量:1
  • 2张宇镭,赵立平.基于双核酸频率分布特征的细菌亲缘关系定量分析[J].中国微生态学杂志,2006,18(4):261-263. 被引量:1
  • 3Han Jiawei,Pei Jian,Yin Yiwen.Mining Frequent Patterns without Candidate Generation//Proc of the ACM SIGMOD International Conference on Management of Data.Dallas,USA,2000:1-12.
  • 4Tsay Y J,Chiang J Y.CBAR:An Efficient Method for Mining Association Rules.Knowledge Based Systems,2005,18(2/3):99-105.
  • 5Bashir S,Jan Z,Baig A R.Fast Algorithms for Mining Interesting Frequent Itemsets without Minimum Support[EB/OL].[2009-04-21].http://arxiv.org/ftp/arxiv/papers/0904/0904.3319.pdf.
  • 6Verhein F,Chawla S.Using Significant,Positively Associated and Relatively Class Correlated Rules for Associative Classification of Imbalanced Datasets//Proc of the7th IEEE International Conference on Data Mining.Omaha,USA,2007:679-684.
  • 7Tsay Y J,Hsu T J,Yu J R.FIUT:A New Method for Mining Frequent Itemsets.Information Sciences:An International Journal,2009,179(11):1724-1737.
  • 8Burdick D,Calimlim M,Gehrke J.MAFIA:A Maximal Frequent Itemset Algorithm for Transactional Databases//Proc of the17th International Conference on Data Engineering.Heidelberg,Germany,2001:443-452.
  • 9Gouda K,Zaki M J.Efficiently Mining Maximal Frequent Itemsets//Proc of the IEEE International Conference on Data Mining.San Jose,USA,2001:163-170.
  • 10Luo Xiangfeng,Liang Guoning,Liu Shijun.Generating Associated Relation between Documents//Proc of the10th IEEE International Conference on High Performance Computing and Communications.Dalian,China,2008:831-836.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部