期刊文献+

降序严格部分变换半群的幂等元秩 被引量:4

Idempotent Rank of Decreasing-order Strictly Partial Transformation Semigroups
下载PDF
导出
摘要 Xn是包含n个元素的全序集,SPn-是Xn上的降序严格部分变换半群,对4 n和2≤r≤n-2,证明了半群SK-(n,r)={α∈SPn-∶|Imα|≤r}是幂等元生成的,并且是由顶端Jr*的(r+1)S(n,r+1)个幂等元生成. Let SP-n be the decreasing-order strictly partial transformations on a totally ordered finite set Xn.For 4≤n,2≤r≤n-2,the paper shows that the subsemigroup SK-(n,r)={α∈SP-n∶|Im α|≤r}is idempotent-generated and it is generated by the(r+1)S(n,r+1) idempotents in J*r.
作者 高荣海 徐波
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第6期4-7,共4页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(10861004) 贵州省科技基金资助项目(黔科合J字LKS[2009]02号)
关键词 幂等元秩 降序 严格部分变换 idempotent rank decreasing-order strictly partial transformation
  • 相关文献

参考文献10

  • 1Umar A.On the semigroups of oder-decreasing finite full transformations[J].Proc Roy Soc Edinburgh,1992,120A:129-142.
  • 2Umar A.On the ranks of certain finite semigroups of order-decreasing transformations[J].Portugaliae Mathematica,1996,53:23-34.
  • 3高荣海,徐波.降序有限部分变换半群的幂等元秩[J].西南大学学报(自然科学版),2008,30(8):9-12. 被引量:20
  • 4Umar A.On the semigroups of partial one-to-one order-decreasing finite transformations[J].Proc Roy Soc Edinburgh,1993,123A:355-363.
  • 5Howie J M.An introduction to semigroup theory[M].London:Academic press,1976.
  • 6Fountain J B.Abundant semigroups[J].Proc London Math Soc,1982,44(3):103-129.
  • 7Howie J M.The subsemigroup generated by the idempotents of all transformation semigroup[J].J London Math Soc,1966,41:707-716.
  • 8Howie J M.Idempotent generators in finite full transformation semigroups[J].Proc Roy Soc Edinburgh Sect,1978,A81:317-323.
  • 9Howie J M,McFadden R B.Idempotent rank in finite full transformation semigroups[J].Proc Roy Soc Edinburgh Sect,1990,A114:161-167.
  • 10Garba G U.Idempotents in partial transformation semigroups[J].Proc Roy Soc Edinburgh,1990,116A:359-366.

二级参考文献9

  • 1李映辉,王守峰,张荣华.含正则*-断面的正则半群(英文)[J].西南师范大学学报(自然科学版),2006,31(5):52-56. 被引量:10
  • 2[1]Howie J M.The Subsemigroup Generated by the Idempotents of full Transformation Semigroup[J].J London Math Soc,1966,41:707-716.
  • 3[2]Howie J M.Idempotent Generators in Finite Full Transformation Semigroups[J].Proc Roy Soc Edinburgh Sect,1978,A81:317--323.
  • 4[3]Howie J M,McFadden R B.Idempotent Rank in Finite Full Transformation Semigroups[J].Proc Roy Soc Edinburgh Sect,1990,Al14:161-167.
  • 5[9]Umar A.On the Semigroups of Oder-Decreasing Finite Full Transformations[J].Proc Roy Soc Edinburgh,1992,120:129-142.
  • 6[10]Howie J M.An Introduction to Semigroup Theory[M].London:Academic Press,1976.
  • 7赵文强,李嘉.Markov积分半群的生成元[J].西南师范大学学报(自然科学版),2007,32(5):14-17. 被引量:10
  • 8杨秀良.严格部分变换半群的幂等元秩[J].Journal of Mathematical Research and Exposition,2000,20(3):441-446. 被引量:4
  • 9游泰杰.变换半群中的幂等元生成性质[J].贵州师范大学学报(自然科学版),2002,20(2):7-9. 被引量:4

共引文献19

同被引文献28

  • 1Garba G U. On the idempotent ranks of certain semigroups of order-preserving transformations [J]. Portugal Math, 1994, 51.
  • 2Barnes G, Levi I. On idempotent ranks of semigroups of partial transformations [J]. Semigroup Forum, 2005, 70: 81-96.
  • 3Umar A. On the ranks of certain finite semigroups of order-decreasing transformations[J]. Portugal Math, 1996, 53: 23-34.
  • 4Gomes G M S, Howie J M. On the rank of certain finite semigroups of transformations[J]. Math Proc Camb Phil Soc, 1987, 102.
  • 5Gomes G M S, Howie J M . On the ranks of certain semigroups of order-preserving transformations [J]. Semigroup Forum, 1992, 45: 272-282.
  • 6Garba G U . On the idempotent ranks of certain semigroups of order preserving transformations[J]. Portugal Math, 1994,51185-204.
  • 7Gomes G M S, Howie J M. On the ranks of certain semigroups of order-preserving transformations [J]. Semigroup Forum, 1992,45: 272- 282.
  • 8Barnes G, Levi I. On idempotent ranks of semigroups of partial transformations [J]. Semigroup Forum,2005,70:81-96.
  • 9Gomes G M S, Howie J M. On the ranks of certain fnite semigroups of transformations [ J ]. Math Proc Camb Phil Soc, 1987 ( 101 ) : 395-403.
  • 10Gomes G M, Howie J M. On the ranks of certain semigroup of order-preserving transformations [J]. Semigroup Forum, 1992,45 (3) :272-282.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部