期刊文献+

迭代逼近渐近非扩张映像不动点的一种变形格式

Strong Convergence of an Iteration Process for Asymptotically Nonexpansive Mappings
下载PDF
导出
摘要 在具一致正规结构的一致G-微分的实Banach空间E框架下,引入一种关于渐近非扩张映像T的新的迭代格式,并证明由此产生的迭代序列{xn}满足一定条件时,强收敛于T的不动点.其结果在更广的空间中把非扩张映像推广到了渐近非扩张映像,从而推广和改进了近代一些相关结果. This paper introduces a new iterative process for asymptotically nonexpansive mappings on a real Banach space E with uniformly Gteaux differentiable norms.It is proved that the iterative sequence {xn} strongly converges to a fixed point of T under certain appropritate conditions.The results have improved and extended some recent results.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第6期18-22,共5页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(11071169) 浙江省自然科学基金(Y6100696)
关键词 一致G-微分范数 一致渐近正则 渐近非扩张 强收敛 正规结构 uniformly Gteaux differentiable norm uniformly asymptotically regular asymptotically nonexpansive strong convergence normal structure
  • 相关文献

参考文献10

  • 1Halpern B.Fixed points of nonexpansive maps[J].Bull Amer Math Soc,1976,73:957-961.
  • 2Xu H K.Viscosity approximation methods for nonexpansive mappings[J].J Math Anal Appl,2004,298:279-291.
  • 3Shioji N,Takahashi W.Strong convergence of approximated sequences for nonexpansive mapping in Banach spaces[J].Proc Amer Math Soc,1997,125:3641-3645.
  • 4Chidume C E,Chidume C O.Iterative approximation of fixed points of nonexpansive mappings[J].J Math Anal Appl,2006,318:288-295.
  • 5Bynum W L.Normal structure coefficients for Banach spaces Pacif[J].J Math,1980,86:427-436.
  • 6Goeble K,Kirk W A.A fixed point theorem for asymptotically nonexpansive mappings[J].Amer Math Soc,1972,35:171-174.
  • 7Song Yisheng,Chen Rudong,Zhou Haiyun.Viscosity approximation methods for nonexpansive mapping sequences in Banach spaces[J].Nonlinear Analysis,2007,66:1016-1024.
  • 8王元恒,曾六川.Banach空间中广义投影变形迭代法的收敛性[J].数学年刊(A辑),2009,30(1):55-62. 被引量:14
  • 9Suziki T.Strong convergence of Krasnoselkii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochner integrals[J].J Math Anal,2005,305:227-239.
  • 10Takahashi W,Ueda Y.On Reich's strong convergence for resolvents of auretive operators[J].J Math Anal Appl,1984,104:546-553.

二级参考文献2

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部