期刊文献+

变量线性相关对主成分方差贡献率的影响 被引量:1

Impact on the Variance Contributes of the Principal Component Made by the Variable Linear Dependant
下载PDF
导出
摘要 研究变量组个数、变量线性相关、线性无关和变量方差的改变,对矩阵特征值、主成分方差贡献率的影响.理论分析证明,线性相关变量个数的增加和变量方差的增大,都能使特征值增大,第一主成分方差贡献率增大,其它主成分方差贡献率减小. This thesis studies the impacts,made by the number of the Variant set,the Variable Linear dependent,Linear independent and the change of the Variable average square.On the eigenvalues of matrix and the Variance contributes of the principal component,the analyses have proved that the increase of the number of the linear dependant variable and the variable average square increases both the eigenvalue and the variance contributes of the first principal component.However,it decreases the contributes of the other principal component.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第6期23-26,共4页 Journal of Henan Normal University(Natural Science Edition)
基金 河南省教育厅自然科学基金项目(2009B110017)
关键词 线性相关 变量 方差贡献率 linear dependant variable variance contributes
  • 相关文献

参考文献4

二级参考文献9

  • 1归庆明,黄顺玉.半相依回归系统的岭型主成分改进估计[J].工程数学学报,1995,12(4):39-45. 被引量:3
  • 2李建军,朱宁,朱志斌.广义岭型主成分估计的一些性质[J].内蒙古师范大学学报(自然科学汉文版),2006,35(2):167-171. 被引量:6
  • 3王松桂.线性回归系统回归系数的一种新估计[J].中国科学:A辑,1988,(10):1033-1040.
  • 4Zeller A. An efficient method of estimating seemingly unrelated regression and tests for aggregation bias [J]. Journal of the American Statistical Association, 1962,57 : 348-368.
  • 5[3]LI T Y.Numerical sloution of a class of deficient potynomial systems[J].SIAM J Numer Anal,1987,24(2),78-79.
  • 6[5]颜庆津.数值分析[M].北京:北京航天大学出版社,1991:23-50.
  • 7李庆杨 王能超 易大义.数值分析[M].武汉:华中科技大学出版社,2002.4-36.
  • 8刘爱义.相依回归方程组主成分估计的改进[J].数理统计与应用概率,1993,(2):70-75.
  • 9蒋尔雄.不可约对称三对角矩阵根的隔离定理的推广[J].高等学校计算数学学报,1999,21(4):305-310. 被引量:4

同被引文献15

  • 1Buyya R, Abramson D, Venugopal S. The grid economy [J]. Proceedings of the IEEE, 2005,93(3) :698-714.
  • 2Maharaj E A, D' Urso P. A coherence-based approach for the pattern recognition of time series[ J ]. Physica A: Sta- tistical Mechanics and its Applications, 2010,389 ( 17 ) : 3516-3537.
  • 3Caiado J, Crato N, Pefiad D. A periodogram-based metric for time series classification [ J]. Computational Statist & Data Analysis, 2006,50(10) :2668-2684.
  • 4Frey B J, Dueck D. Clustering by passing messages between data points[J]. Science, 2007,315(5814):972-976.
  • 5Sambasivam S, Theodosopoulos N. Advanced data cluste- ring methods of mining Web documents [ J ]. Issues in In- forming Science and Information Technology, 2006 (3): 563-579.
  • 6Bohm C, Berchtold S, Keim D A. Searching in high-di- mensional spaces-index structures for improving the per- formance of multimedia databases [J].ACM Computing Surveys, 2001,33 ( 3 ) :322-373.
  • 7Fang S H, Lin T N. Principal component localization in in- door WLAN environments [ J]. IEEE Transactions on Mo- bile Computing, 2012,11 ( 1 ) : 100-110.
  • 8Climescu-Hauliea A. How to choose the number of clus- ters: The cramer multiplicity solution [ C ]// Advances ill Data Analysis. 2007 : 15-22.
  • 9Kaufman L, Rousseeuw P J. Finding Groups in Data: An Introduction to Cluster Analysis [ M ]. John Wiley and Sons, 1990.
  • 10郭崇慧,贾宏峰,张娜.基于ICA的时间序列聚类方法及其在股票数据分析中的应用[J].运筹与管理,2008,17(5):120-124. 被引量:13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部