期刊文献+

基于自适应外力的图像分割方法 被引量:2

Image Segmentation Based on Adaptive External Force
下载PDF
导出
摘要 为快速、准确地从复杂的图像中提取出感兴趣的目标,基于变分水平集框架,结合梯度矢量流和符号距离函数惩罚泛函的优点,提出一种基于自适应外力的图像分割方法.该方法在自适应外力作用下将位于目标内部、外部,甚至与目标轮廓相交叉的初始轮廓准确地吸引到目标的边缘;符号距离函数惩罚项的引入避免了繁琐、耗时的符号距离函数初始化工作;同时,模型中添加了加权弧长调整项以保证曲线演化的连续性和平滑性.最后将该方法与现有的Li的快速变分法用于合成和实际医学图像的仿真模拟,证明了该方法的可行性和优越性. In order to rapidly and accurately extract regions of interest from a complicated image,by combining the gradient vector flow and the signed-distance penalized functional,an image segmentation method based on adaptive external force is proposed under the variational level set frame.This method correctly attracts the initial contours inside outside,even across the object to the object boundary,introduces the signed-distance penalizing term to avoid complicated and time-consuming signed-distance re-initialization procedure,and employs the weighted arc length-rectifying term to make the contour to evolve continuously and smoothly during the propagation.The proposed me-thod,together with the existing Li's method,is finally used to segment hybrid and real medical images,the results demonstrating its feasibility and superiority.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第11期117-121,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(30530230) 上海交通大学"医工(理)交叉研究基金"资助项目(40YG2009ZD102)
关键词 图像分割 水平集 变分法 自适应力 梯度矢量流 image segmentation level set variational method adaptive force gradient vector flow
  • 相关文献

参考文献15

  • 1陈波,赖剑煌.用于图像分割的活动轮廓模型综述[J].中国图象图形学报,2007,12(1):11-20. 被引量:54
  • 2陶玲,钱志余,陈春晓.主动轮廓模型及其在医学体分割中的应用[J].华南理工大学学报(自然科学版),2008,36(1):67-71. 被引量:2
  • 3Xu C,Prince J L.Snakes,shapes,and gradient vector flow[J].IEEE Transactions on Image Processing,1998,7(3):359-369.
  • 4Jacob M,Blu T,Unser M.Efficient energies and algorithms for parametric snakes[J].IEEE Transactions on Image Processing,2004,13(9):1231-1244.
  • 5Zimmer C,Olivo-Marin J.Coupled parametric active contours[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(11):1838-1842.
  • 6Caselles V,Catte F,Coll T,et al.A geometric model for active contours in image processing[J].Numerische Mathematik,1993,66(1):1-31.
  • 7Li C,Xu C,Gui C,et al.Level set evolution without re-initialization:a new variational formulation[C] ∥Procee-dings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR).San Diego:CA,2005:430-436.
  • 8Cremers D,Rousson M,Deriche R.A review of statistical approaches to level set segmentation:integrating color,texture,motion and shape[J].International Journal of Computer Vision,2007,72(2):195-215.
  • 9Kass M,Witkin A,Terzopoulos D.Snakes:active contour models[J].International Journal of Computer Vision,1988,1(4):321-331.
  • 10Osher S,Paragios N.Geometric level set methods in imaging,vision,and graphics[M].New York:Springer-Verlag,2003.

二级参考文献60

  • 1蒋晓悦,赵荣椿.一种改进的活动轮廓图像分割技术[J].中国图象图形学报(A辑),2004,9(9):1019-1024. 被引量:7
  • 2李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757. 被引量:125
  • 3石澄贤,王洪元,夏德深.小波域上图像非线性扩散滤波[J].中国图象图形学报(A辑),2004,9(12):1449-1453. 被引量:4
  • 4张继武,张道兵,史舒娟,孙立新,许朝晖.基于水平集方法的数字胸片图像分割[J].中国图象图形学报(A辑),2004,9(12):1459-1465. 被引量:9
  • 5李彬,田联房,陈萍,何元烈,叶广春,毛宗源.基于模块化设计的三维医学图像体绘制方法[J].华南理工大学学报(自然科学版),2006,34(1):77-81. 被引量:6
  • 6Leventon M E,Grimson W E L,Faugeras O.Statistical shape influence in geodesic active contours[A].In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C],Hilton Head Islands,South California,USA,2000,1:316-323.
  • 7Cohen L D.On active contour models and balloons[J].CVGIP:Image Understanding,1991,53(2):211 - 218.
  • 8Cohen L D,Cohen I.Finite-element methods for active contour models and balloons for 2-D and 3-D images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15 (11):1131 - 1147.
  • 9Leroy B,Herlin I,Cohen L D.Multiresolution algorithms for active contour models[A].In:proceedings of 12th International Conference on Analysis and Optimization of Systems[C],Paris,France,1996:58 - 65.
  • 10Tek H,Kimia B B.Image segmentation by reaction-diffusion bubbles[A].In:Proceedings of Fifth International Conference on Computer Vision[C],Boston,Massachusetts,USA,1995:156 - 162.

共引文献54

同被引文献28

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部