期刊文献+

基于Fisher线性判别率的加权K-means聚类算法 被引量:5

Weighted K-means clustering algorithm based on Fisher's linear discriminant ratio
下载PDF
导出
摘要 为提高K-means聚类效果,采用Fisher线性判别率的方法确定特征在聚类中的贡献度并依此对特征进行加权聚类。在人工和实际数据集上所做的实验表明,本方法在聚类效果上优于其他同类加权K-means聚类算法。 To improve the clustering effect of K-means,the features were successively weighted by using the method of Fisher's linear discriminant ratio according to their contribution in clustering and the data were clustered. The experimental results done on synthetic and real data show that the method has superiority over other weighted K-means clustering algorithm in the clustering effect.
出处 《计算机应用研究》 CSCD 北大核心 2010年第12期4439-4442,共4页 Application Research of Computers
基金 江苏省自然科学基金资助项目(BK2009199) 江苏大学高级人才资助项目(1283000347)
关键词 K-均值 聚类 Fisher线性判别率 特征加权 调整随机指标 类内错误率均方和 K-means clustering Fisher's linear discriminant ratio weighted features entropy adjusted rand index sum of square within-cluster error
  • 相关文献

参考文献19

  • 1PARK H S,JUN C H.A simple and fast algorithm for K-medoids clustering[J].Expert Systems with Applications,2009,36(2):3336-3341.
  • 2孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1072
  • 3彭京,唐常杰,程温泉,石葆梅,乔少杰.一种基于层次距离计算的聚类算法[J].计算机学报,2007,30(5):786-795. 被引量:11
  • 4倪巍伟,陈耿,吴英杰,孙志挥.一种基于局部密度的分布式聚类挖掘算法[J].软件学报,2008,19(9):2339-2348. 被引量:19
  • 5KUMAR P,KRISHNA P R,BAPI R S,et al.Rough clustering of sequential data[J].Data & Knowledge Engineering,2007,63(2):183-199.
  • 6HUANG Zhe-xue.Extensions to the K-means algorithm for clustering large data sets with categorical values[J].Data Mining and Know-ledge Discovery,1998,2(3):283-304.
  • 7KHAN S S,AHMAD A.Cluster center initialization algorithm for K-means clustering[J].Pattern Recognition Letters,2004,25(11):1293-1302.
  • 8RAY S,TURI R H.Determination of number of clusters in K-means clustering and application in colour image segmentation[C] //Proc of the 4th International Conference on Advances in Pattern Recognition and Digital Techniques.1999:137-143.
  • 9FAHIM A.M,SALEM A.M,TORKEY F.A,RAMADAN M.A.An efficient enhanced k-means clustering algorithm[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2006,7(10):1626-1633. 被引量:30
  • 10LIKAS A,VLASSIS N,VERBEEK J J.The global K-means clustering algorithm[J].Pattern Recognition,2003,36(2):451-461.

二级参考文献35

  • 1彭京,唐常杰,李川,陈安龙,胡建军.一种基于UD-Tree的分布式数据库新型复制架构[J].小型微型计算机系统,2004,25(12):2065-2069. 被引量:5
  • 2彭京,唐常杰,胡建军,陈安龙,李川.DIRM:基于动态信息路由的数据检索模型[J].四川大学学报(工程科学版),2005,37(1):108-115. 被引量:9
  • 3倪巍伟,孙志挥,陆介平.k-LDCHD——高维空间k邻域局部密度聚类算法[J].计算机研究与发展,2005,42(5):784-791. 被引量:18
  • 4李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 5Turk M.,Pentland M..Eigenfaces for recognition.The Journal of Cognitive Neuroscience,1991,3(1):71-79.
  • 6Hallinan P..A deformable model for the recognition of humanfaces under arbitrary illumination[Ph.D.dissertation].Har-vard University,Cambridge,ldassachusetts,1995.
  • 7Lanitis A.,Taylor C.,Cootes T..Automatic face identification system using flexible appearance models.Image and Vision Computing,1995,13(5):393-401.
  • 8Vetter T.,Poggio T..Linear object classes and image synthesis from a single example image.IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):733-742.
  • 9Georghiades A.,Belhumeur P.,Kriegman D..From few to many:Illumination cone models for face recognition under variable lighting and pose.IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(6):643-660.
  • 10Gross Ralph.Matthews Lain,Baker Simon.Eigen light-fields and face recognition across pose.In:Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Reeognition(FGR'02),Washington D C,2002.

共引文献1127

同被引文献49

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部