摘要
为提高K-means聚类效果,采用Fisher线性判别率的方法确定特征在聚类中的贡献度并依此对特征进行加权聚类。在人工和实际数据集上所做的实验表明,本方法在聚类效果上优于其他同类加权K-means聚类算法。
To improve the clustering effect of K-means,the features were successively weighted by using the method of Fisher's linear discriminant ratio according to their contribution in clustering and the data were clustered. The experimental results done on synthetic and real data show that the method has superiority over other weighted K-means clustering algorithm in the clustering effect.
出处
《计算机应用研究》
CSCD
北大核心
2010年第12期4439-4442,共4页
Application Research of Computers
基金
江苏省自然科学基金资助项目(BK2009199)
江苏大学高级人才资助项目(1283000347)
关键词
K-均值
聚类
Fisher线性判别率
特征加权
熵
调整随机指标
类内错误率均方和
K-means
clustering
Fisher's linear discriminant ratio
weighted features
entropy
adjusted rand index
sum of square within-cluster error