摘要
将隐马尔可夫模型(HMM)与小波神经网络(WNN)相结合,提出了一种基于心音信号的身份识别方法。该方法首先利用HMM对心音信号进行时序建模,并计算出待识别心音信号的输出概率评分;再将此识别概率评分作为小波神经网络的输入,通过小波神经网络将HMM的识别概率值进行非线性映射,获取分类识别信息;最后根据混合模型的识别算法得出识别结果。实验采集80名志愿者的160段心音信号对所提出的方法进行验证,并与GMM模型的识别结果进行了对比,结果表明,所选方法能够有效提高系统的识别性能,达到了比较理想的识别效果。
Used HMM combined with WNN,this paper proposed a human identity recognition method based on heart sound signal. First,employed HMM to train the time sequence of heart sounds and to compute the Viteribi output score. Then used the score as the input of WNN,made nonlinear mapping by WNN to acquire the classification information. The result of recognition was made by these two kinds of recognition information. The experiment collected 160 heart sounds from 80 people to test the proposed algorithm,the proposed system achieved higher recognition rate than Gaussian mixture model method. The results show that the hybrid model can effectively improve the recognition performance of the system and achieve a satisfactory effect.
出处
《计算机应用研究》
CSCD
北大核心
2010年第12期4561-4564,共4页
Application Research of Computers
基金
国家自然科学基金资助项目(30770551)
重庆市新型医疗器械重大科技专项资助项目(CSTC
2008AC5103)
重庆大学研究生科技创新基金资助项目(201005A1B0010336)
关键词
心音信号
身份识别
隐马尔可夫模型
小波神经网络
heart sound
human identity recognition
hidden Markov model( HMM)
wavelet neural network( WNN)