期刊文献+

基于单幅图像的深度非连续性估计

Depth discontinuity estimation based on single image
下载PDF
导出
摘要 如何准确保持深度的非连续是以视觉方法进行三维重建中的重要问题。针对此类问题,提出了一种基于单幅图像进行几何非连续性估计的全局优化方法。将其作为一个统计学习问题,构建由一系列彩色图像及其对应深度图组成的训练库,通过在图像和深度图中分别选取合适的图像特征向量以及深度连续性度量,训练联合高斯马尔可夫随机场概率模型,使得几何非连续估计过程能够有效结合图像的上下文信息来进行全局推理。实验结果证明了算法的有效性。 How to preserve depth discontinuity is an important issue needed to be considered in most work on visual 3D reconstruction.This paper attempted to extract this information from a single image,and formulate the perception of depth discontinuity as a statistical learning problem.A training set was created,which is composed of a series of real-color images and their corresponding depthmaps.Then,by extracting appropriate image feature and measuring corresponding depth discontinuity,a joint Gaussian Markov random field was trained to model the conditional distribution of depth discontinuity and gave the various visual cues.The experimental results show that the presented algorithm is able to recover fairly accurate depth discontinuity maps.
出处 《计算机应用》 CSCD 北大核心 2010年第12期43-46,共4页 journal of Computer Applications
关键词 统计学习 马尔可夫随机场 深度非连续 单幅图像 训练集 statistical learning Markov Random Field(MRF) depth discontinuity single image training set
  • 相关文献

参考文献14

  • 1BRUCE V, GREEN P R, GEORGESON M A. Visual perception: Physiology, psychology and ecology[ M]. East Sussex: Psychology Press, 2003.
  • 2SCHARSTEIN D, SZELISKI R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[ J]. International Journal of Computer Vision, 2002, 47(1/3) : 7 -42.
  • 3SEITZ S M, CURLESS B, DIEBEL J, et al. A comparison and evaluation of muhi-view stereo reconstruction algorithms[ C] // Proceedings of Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2006:519-528.
  • 4HOIEM D, EFROS A A, HEBERT M. Recovering surface layout from an image[ J]. International Journal of Computer Vision, 2007, 75(1): 151-172.
  • 5HOIEM D, STEIN A N, EFROS A A, et al. Recovering occlusion boundaries from a single image[ C] // Proceedings of International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2007:1-8.
  • 6SAXENA A, CHUNG S H, NG A Y. 3-D depth reconstruction from a single still image[ J]. lnteroatiortal Journal of Computer Vision, 2007, 76(1): 53-69.
  • 7KOLMOGOROV V, ZABIH R. Computing visual correspondence with occlusions using graph cuts[ C] // Proceedings of International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2001:508-515.
  • 8SUN J, ZHENG N N, SHUM H Y. Stereo matching using belief propagation[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(7): 787-800.
  • 9TAO H, SAWHNEY H S, KUMAR R. A global matching framework for stereo computation[ C] // Proceedings of the 8th International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2001:532-539.
  • 10HONG L, CHEN G. Segment-based stereo matching using graph cuts[ C] // Proceedings of Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2004:74-81.

二级参考文献14

  • 1Scharstein D, Szeliski R. A taxonomy and evaluation of dense two frame stereo correspondence algorithms[J]. International Journalof Computer Vision, 2002, 47(1/2/3) 7-42.
  • 2Brown M Z, Burschka D, Hager G D. Advances in computational stereo [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(8): 993-1008.
  • 3Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23 (11) :1222-1239.
  • 4Sun J, Zheng N N, Shum H Y. Stereo matching using belief propagation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(7): 787-800.
  • 5Kolmogorov V, Zabih R. Computing visual correspondence with occlusions using graph cuts [C] //Proceedings of International Conference on Computer Vision, Vancouver, 2001: 508- 515.
  • 6Hong L, Chen G G. Segment based stereo matching using graph cuts [C] //Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington DC, 2004:74-81.
  • 7Bleyer M, Gelautz M. Graph based surface reconstruction from stereo pairs using image segmentation [C]//Proceedings of SPIE, San Jose, 2005, 5665:288-299.
  • 8Felsberg M. Low level image processing with the structure multivector [D]. Kiel: University of Kiel, 2002.
  • 9Felsberg M, Kruger N. A probabilistic definition of intrinsic dimensionality for images [C] //Proceedings of the 25th DAGM Symposium, Magdeburg, 2003, 2781:140-147.
  • 10Kruger N, Felsberg M. A continuous formulation of intrinsic dimension [C] //Proceedings of British Machine Vision Conference, Norwich, 2003:260-270.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部