期刊文献+

稀疏保留投影及在表情识别中的应用 被引量:1

Sparse preserving projection and its application to expression recognition
下载PDF
导出
摘要 提出一种基于稀疏保留投影的人脸表情识别方法,称之为SPP。与局部保留投影(LPP)不同,SPP通过稀疏重构处理,在保留表情稀疏重构信息的同时也保留表情局部邻信息,这样可从原始表情数据中提取更多、更有效、更具判决性的内在表情特征,获得的投影也更稳定。基于CED-WYU(1.0)和JAFFE两个表情数据库的识别结果表明,基于SPP的特征提取方法能有效地提高识别率。 A facial expression recognition method based on Sparse Preserving Projection(SPP) was proposed in this paper.Unlike Local Preserving Projection(LPP),SPP aims to preserve the sparse reconstructive relationship of the expression data,simultaneously,local neighborhood information was preserved during the dimensionality reduction procedure.SPP could extract more useful and discriminatal expression features from the orginal expression data,and the obtained projections were more stable.Experimental result on CED-WYU(1.0)and JAFFE show that SPP is an effective method for improving the recognition accuracy.
作者 黄勇
出处 《计算机应用》 CSCD 北大核心 2010年第12期100-101,125,共3页 journal of Computer Applications
关键词 局部保留投影 稀疏保留投影 表情识别 Local Preserving Projection(LPP) Sparse Preserving Projection(SPP) expression recognition
  • 相关文献

参考文献6

  • 1TURK M. Eigenfaces for recognition[ J]. Journal of Cognitive Neuroscience, 1991,3(1) : 71 - 86.
  • 2HE XIAOFEI, NIYOGI P. Locality preserving projections[ C]//Proceedings of Advances in Neural Information Processing Systems 16. Cambridge: MIT Press, 2004: 153-160.
  • 3刘敏,李晓东,王振海.一种新的有监督保局投影人脸识别算法[J].计算机应用,2009,29(5):1416-1418. 被引量:12
  • 4WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[ J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2009, 31 (2) : 210 - 227.
  • 5DONOHO D, TSAIG Y. Fast solution of ll-norm minimization problems when the solution may be sparse[ R]. Stanford: Stanford University, 2006.
  • 6黄勇.基于多种主元分析与信息融合的人脸表情识别[D].江门:五邑大学,2007.

二级参考文献14

  • 1ZHAO W, CHELLAPPA R, PHILLIPS P J, et al. Face recognition: A literature survey[ J]. ACM Computing Surveys, 2003, 35 (4) : 399 -458.
  • 2TURK M, PENTLAND A. Eigenfaces for recognition [ J]. Journal of Cognitive Neuroscience, 1991,3(1) : 71 -86.
  • 3BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 711 -720.
  • 4HE XIAO - FEI, YAN SHUI - CHENG, HU YU - XIAO, et al. Face recognition using laplacianfaces[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3) : 328 - 340.
  • 5ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding [ J]. Science, 2000, 290(5500) : 2323 - 2326.
  • 6ZHAO HAI-TAO, SUN SHAO-YUAN, JING ZHONG-LIANG, et al. Local structure based supervised feature extraction[ J]. Pattern Recognition, 2006, 39(8) : 1546 - 1550.
  • 7DENG CAI, XIAOFEI HE, JIAWEI HAN, et al. Orthogonal laplacianfaces for face recognition[ J]. IEEE Transactions on Image Processing, 2006, 15(11) : 3608 - 3614.
  • 8ZHU LEI, ZHU SHAN-AN. Face recognition based on orthogonal discriminant locality preserving projections [ J]. Neurocomputing,2007,70:1543 -1546.
  • 9PHILLIPS P J, MOON H, RIZVI S A, et al. The feret evaluation methodology for face-recognition algorithms[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10) : 1090 - 1104.
  • 10PHILLIPS P J. The facial recognition technology (FERET) Database [ EB/OL]. [ 2008 - 10 -06]. http://www, it|. hist. gov/iad/ humanid/feret/feret_master, html.

共引文献21

同被引文献15

  • 1苏红军,杜培军,盛业华.一种基于分形维数的高光谱遥感波段选择算法研究[J].测绘通报,2007(3):23-26. 被引量:10
  • 2BACHMANN CM.AINSWORTH T I., FUS1NA R A. Exploiling manifold geometry in hyperspectral imagery [J]. IEEE Trans.OnGeosciences and Re-mote Sensing ,2005,43 ( 3 ) : 884-897.
  • 3EDWARDJ J,AUsc's Guide To Principal Com-pomcnts[M].New York:A Wiley-Interscience Pub-lication,1992.
  • 4BELHUMEUR P N. HESPANHA J P. KRIEG- MAN D. Eigenfaces. Fisherfaces: recognilion u sing dlass specific linear prijection[J]. IEEE Trans. Pattern Analysis attd Machine Intelli-gence,1997.19(7):711-720.
  • 5HE X F.YAN,SHCH, HU Y X, etal.Face rec-ognition using laplacianfaces [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27(3) :328-340.
  • 6HE X F,CAI D,YAN SH CH, etal: Neighbor- hood preserving embedding [C]. Proceedings of tke lOtk IEEE Int'J Conf. Computer Vision (IC- CV'2005) ,Beijing,2005,2 : 1208-1218.
  • 7QIAO L SH,CHEN S C,TAN X Y. Sparsity pre- serving projections with applications to face recogni- tion[J]. Pattern Recognition,2010,43 (1): 331 341.
  • 8WRIGHTJ, YANGAY, GANESHA, et al: Ro- busl face recognition via sparse representation [J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2009,31 (2) : 210- 227.
  • 9INABA F K, SAI.LES E O T. Face recognition based on sparse representation and joint sparsity model with matrix completion [J]. IEEE Latin A merica Transactions ,2012,10(1) :1344-1351.
  • 10ROWELS S T,SAUI. L K. Nonlinear dimensional ity reduction by locally linear embedding[J]. Sci ence,2000,290(5500) : 2323-2326.

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部