摘要
传统的无加权小世界网络在用户聚类中具有良好的性质,但不能准确表达用户之间的紧密关系,导致用户聚类效果不够良好。为此在网络中引入了加权边,并利用小世界网络理论对系统中的用户网络进行分析,定义和计算了流动阻力和流动效率,建立了加权的小世界网络模型,并提出了此模型下的重连边算法。实验表明,与传统的小世界网络模型相比,该模型能更好地对用户进行聚类,收敛速度更快,聚类效果更好。
Traditional small word network has a good property in user clustering,but it is not an accurate expression of the close relationship between users,resulting in not good clustering effect of users.This paper introduced weighted edges in the network,analyzed user network in systems using small world network theory,defined and calculated the flow resistance and flow efficiency,built a user clustering model with small world properties,and proposed a re-connected edge algorithm.Experimental results show that,compared with the traditional small word model,the proposed model can be better for users to cluster,and also has faster convergence rate.It also achieves better clustering results than traditional clustering method.
出处
《计算机应用》
CSCD
北大核心
2010年第12期142-144,201,共4页
journal of Computer Applications
关键词
权
小世界网络
用户聚类
流动阻力
流动效率
weight
small word network
user clustering
flow resistance
flow efficiency