期刊文献+

基于加权小世界网络模型的用户聚类技术 被引量:2

User clustering technology based on weighted small world network model
下载PDF
导出
摘要 传统的无加权小世界网络在用户聚类中具有良好的性质,但不能准确表达用户之间的紧密关系,导致用户聚类效果不够良好。为此在网络中引入了加权边,并利用小世界网络理论对系统中的用户网络进行分析,定义和计算了流动阻力和流动效率,建立了加权的小世界网络模型,并提出了此模型下的重连边算法。实验表明,与传统的小世界网络模型相比,该模型能更好地对用户进行聚类,收敛速度更快,聚类效果更好。 Traditional small word network has a good property in user clustering,but it is not an accurate expression of the close relationship between users,resulting in not good clustering effect of users.This paper introduced weighted edges in the network,analyzed user network in systems using small world network theory,defined and calculated the flow resistance and flow efficiency,built a user clustering model with small world properties,and proposed a re-connected edge algorithm.Experimental results show that,compared with the traditional small word model,the proposed model can be better for users to cluster,and also has faster convergence rate.It also achieves better clustering results than traditional clustering method.
出处 《计算机应用》 CSCD 北大核心 2010年第12期142-144,201,共4页 journal of Computer Applications
关键词 小世界网络 用户聚类 流动阻力 流动效率 weight small word network user clustering flow resistance flow efficiency
  • 相关文献

参考文献10

  • 1PARK Y-J, CHANG K-N. Individual and group behavior-based customer profile model for personalized product recommendation [J]. Expert Systems with Applications, 2009, 36(2): 1932 - 1939.
  • 2HANJW KAMBEM 范明 孟晓峰 译.数据挖掘:概念与技术[M].北京:机械工业出版社,2001.237-251.
  • 3COLLINS J J, CHOW C C. It's a small world [ J]. Nature, 1998, 393(6684) : 409 -410.
  • 4ALBERT R, BARABASI A L. Statistical mechanics of complex networks [ J]. Review Modern Physics, 2002, 74( 1):47 -51.
  • 5WATTS S J, STROGATX S H. Collective dynamics of 'small-world' networks [ J]. Nature, 1998, 393(6684) : 440 -442.
  • 6NEWMAN M E J, WATTS D J. Renormalization group analysis of the small-world network model [ J]. Physics Letters A, 1999,263 (4/ 6) : 341 - 346.
  • 7LI Yong FANG Jin-Qing LIU Qiang LIANG Yong.Small World Properties Generated by a New Algorithm Under Same Degree of All Nodes[J].Communications in Theoretical Physics,2006,45(5):950-954. 被引量:8
  • 8LATORA V, MARCHIORI M. Economic small-world behavior in weighted networks [ J]. The European Physical Journal B, 2003, 32(2) : 249 -263.
  • 9RESNICK P, IACOVOU N, SUCHAK M, et al. Grouplens: An open architecture for collaborative filtering of netnews [ C]// ACM Conference on Computer Supported Collaborative Work. Chapel Hill: ACM Press, 1994:175 - 186.
  • 10MovieLens data sets [ EB/OL]. [ 2010 - 01 - 01 ]. http://www. grouplens, org/node/73.

二级参考文献12

  • 1M.E.J.Newman and D.J.Watts,Phys.Rev.E 60 (1999)7332.
  • 2R.Kasturirangan cond-mat/9904055 (1999).
  • 3S.N.Dorogovtsev and J.F.F.Mendes,Europhys.Lett.50(2000) 1.
  • 4J.Kleinberg,Nature (London) 406 (2000) 845.
  • 5J.Ozik,B.R.Hunt,and E.Ott,Phys.Rev.E 69 (2004)026108.
  • 6P.Erdos and A.R'enyi,Publ.Math.6 (1959) 290.
  • 7P.Erdos and A.R'enyi,Publ.Math.Ins.Hung.Acad.Sci.5 (1960) 17.
  • 8R.Serra,M.Villani,and L.Agostini,Complex Systems15 (2005) 2004.
  • 9Qing Liu,Jin-Qing Fang,Yong Li,and Yong Liang,Complex System and Complexity Science 2 (2005) 13.
  • 10R.Albert and A.L.Barabasi,Phys.Rev.Mod.74 (2002)47.

共引文献33

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部