摘要
设G(V,E)是一个简单图,k是一个正整数,f是一个V(G)∪E(G)到{1,2,...,k}的映射.如果u,v∈E(G),则f(u)=f(v),f(u)=f(uv),f(v)=f(uv),C(u)=C(v),其中C(u)={f(u)}∪{f(uv)|uv∈E(G)}.称f是图G的邻点可区别E-全染色,称最小的数k为图G的邻点可区别E-全色数.讨论了路和圈的多重联图的邻点可区别E-全色数。
Let G(V,E) be a simple graph,k be a positive integer,f be a mapping from V(G) ∪ E(G) to {1,2,...,k}.If uv ∈ E(G),we have f(u) = f(v),f(u) = f(uv),f(v) = f(uv),C(u) = C(v),where C(u) = {f(u)} ∪ {f(uv)|uv ∈ E(G)}.Then f is called the adjacent vertex-distinguishing E-total coloring.The minimal number of k is called the adjacent vertex-distinguishing E-total chromatic number of G.The adjacent vertex-distinguishing E-total chromatic number of the multiple join graph of path and circle are obtained in this paper.
出处
《纯粹数学与应用数学》
CSCD
2010年第6期909-914,共6页
Pure and Applied Mathematics
基金
国家自然科学基金(10771091)
甘肃省"十一五"规划课题(2009
144)
关键词
路
圈
多重联图
邻点可区别E-全色数
path
circle
the multiple join graph
adjacent vertex-distinguishing E-total chromatic number