期刊文献+

对称扩展的有界分配格的同余关系及其应用 被引量:2

Congruences on the symmetric extended bounded distributive lattice and its applications
下载PDF
导出
摘要 给出了对称扩展的有界分配格的定义,即带有满足一定条件的一元运算的有界分配格.然后给出了这种分配格上的主同余的等式刻划及其可补性.最后,讨论了对称扩展的有界分配格的次直不可约性。 In this paper we give the definition of a symmetric extended bounded distributive lattice,namely it is a bounded distributive lattice with an unary operation satisfied certain conditions.We get the equational description of the principal congruence of the symmetric extended bounded distributive lattices,and also its complementary.Furthermore,the subdirectly irreducibility is studied.
机构地区 三峡大学理学院
出处 《纯粹数学与应用数学》 CSCD 2010年第6期1053-1056,共4页 Pure and Applied Mathematics
关键词 分配格 对称扩展分配格 主同余关系 可补性 次直不可约性 distributive lattice symmetric distributive lattice principal congruence relation complementary subdirectly irreducibility
  • 相关文献

参考文献7

  • 1Berman J.Distributive lattices with an additional unary operation[J].Aequationes Math.,1977,16:165-171.
  • 2Sankappanavar H P.A characterization of principal congruences of de Morgan and its applications[J].Math.Logic in Latin America,NorthHooland,1980:341-349.
  • 3Mendes C.Complemented congruences on Ockham algebras[J].Algebra Universe,2005,54:279-290.
  • 4Blyth T S,Varlet J C.Congruences on MS-algebras[J].Bull.Soc.Roy.Sci.Liege.,1984,53:341-362.
  • 5Lakser H.Principal congruences of pseudocomplemented distributive lattices[J].Proc.Amer.Math.Soc,1973,37(l):12-26.
  • 6黎爱平,陈水利.K_(11)-代数的主同余关系的可补性[J].模糊系统与数学,2007,21(1):58-62. 被引量:2
  • 7Blyth T S,Fang Jie.Extended Ockham algebras[J].Comm.Algebra,2000,28(3):1271-1284.

二级参考文献6

  • 1Berman J. Distributive lattices with an additional unary operation[J]. Acquations Math. ,1977,16:165~171.
  • 2Beazer R. On some small varieties of distributive Ockham algebras[J]. Glasgow Math. J. ,1984,25:175~181.
  • 3Lakser H. Principal congruences of Pseudo-complemented distributive lattices [J]. Proc. Amer. Math. Soc. ,1973,37(1): 12~26.
  • 4Sankappanav H P. A characterization of principal congruences of de Morgan algebra and its application[J].Math. Logic in Latin America,NorthHooland , 1980: 341~349.
  • 5Gratzer G. General lattice theory[M]. New York:Academic,1978.
  • 6黎爱平,占罗林.K_(1,1)—代数的主同关系[J].上饶师专学报,1998,18(6):10-15. 被引量:1

共引文献1

同被引文献13

  • 1罗从文.伪补MS代数的主同余关系[J].应用数学,2004,17(4):661-664. 被引量:11
  • 2Sankappanavar H P. Pseudocomplemented Ockham and de Morgan algebras [j]. This Zeitschrift, 1986,(12) : 385394.
  • 3Fang J. Pseudocomplemented MS-algebras[J]. Algebra Colloq.,1996,3(1) : 59-65.
  • 4Lakser H P. Principal congruences of pseudocomplemented distributive lattices [J]. Proc. Amer. Math. soc.,1973,37(1):12 -26.
  • 5杨云.分配P-代数的核理想与余核滤子[J].华中师大学报(自然科学版),1997,23:5-8.
  • 6Berman J. Distributive lattices with an additional unary operation [J]. Aequationes Math,1977,(16) : 165 -171.
  • 7Blyth T S,Fang J. Symmetric extended Ockham algebras [J]. Algebra Colloquium,2003,10(4) :479 -489.
  • 8Berman J. Distributive lattices with an additional unary operation[J]. Aequationes Math. ,1977,16:165-171.
  • 9Blyth T S, Varlet J C. Ockham algebras[M]. Oxford University Press,1994.
  • 10Blyth T S, Fang Ji. Extended Ockham algebrasrJ]. Comm. Algebra,2000,28(3):1271-1284.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部