期刊文献+

基于高阶统计量的多模噪声中的信号检测 被引量:4

High-Order Statistics-based Signal Detection In Multi-modal Noise
原文传递
导出
摘要 按照概率密度函数形状,给出了一种比较通用的非高斯噪声模型——多模噪声。多模噪声总体上属于非高斯噪声,但兼容了高斯噪声。改进了高阶统计量的双谱算法,给出一种基于双谱的多模噪声中信号的检测方法,并在此基础上结合无惯性非线性变换器和双谱技术,改进了传统的自适应幅频干扰抑制器,可以精确估计或检测信号。仿真表明该方法可以抑制高斯噪声,同时在强噪声和复杂背景下可以以较高的检测概率检测出信号,优于传统的似然比检测。 In accordance with the shape of probability density function,a more universal model of non-Gaussian noise known as multi-modal noise is defined.Multi-modal noise,as a whole,is non-Gaussian,but comprises Gaussian noise.The bispectrum algorithm of high-order statistics comprising Gaussian noise is improved,and the method for signals detection in multi-modal noise given.On this basis,the self-adapting amplitude and frequency interference suppresser,in combination of inertialess nonlinear transformer and bispectrum is designed.It could exactly estimate and detect signal.This method could suppress Gaussian noise and with higher detection probability,detect the signal in strong-noise and complex background.Simulation results show that it is superior to the traditional likelihood-ratio dection.
出处 《通信技术》 2010年第12期18-20,23,共4页 Communications Technology
基金 国家自然科学基金资助项目(批准号:60971130)
关键词 多模噪声 高阶统计量 双谱 无惯性非线性变换器 信号检测 multi-modal noise high-order statistics bispectrum inertia-less nonlinear transformer signal detection
  • 相关文献

参考文献3

二级参考文献17

  • 1Te-Won Lee,M S Lewicki,T J Sejnowski.ICA mixture models for unsupervised classification of non-Gaussian classes & automatic context switching in blind signal separation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(10):1078
  • 2АВРощупкин.МатематическоеМоделированиеиСравнитель- ныйАнализХарактеристикАмплитудныхПодавителейНегауссовскихПом
  • 3Yunxin Zhao,Xinhua Zhuang,Sheu-Jen Ting.Gaussian mixture density modeling of non-Gaussian source for autoregressive process [J].IEEE Transactions on Signal Processing,1995,43(4):894-903.
  • 4S Chen,B Mulgrew,L Hanzo.Least bit error rate adaptive nonlinear equalizers for binary signaling [C].IEE Proceedings Communications,2003,150(1):29-36.
  • 5ВАЧердынцев,СДалабаев(山拜·达拉拜).ПриемСигналовнаФонеПомех[M].Минск:Белорусскийгосударственныйуниверситетинформатикиир
  • 6СДалабаев(山拜·达拉拜).МетодыЗащитыотПомехвКаналахРадиосвязи[J].ИзвестияБелорусскойИнженернойАкадемии,1997,1(3):67-72.
  • 7StevenMKay 罗鹏飞 译.统计信号处理基础[M].北京:电子工业出版社,2003.750-768.
  • 8BernardSklar 徐平平 译.数字通信(第2版)[M].北京:电子工业出版社,2002.81-182.
  • 9JohnGProakis 张力军 译.数字通信(第4版)[M].北京:电子工业出版社,2003.169-229.
  • 10Чердынцев В А,Далабаев С(山拜·达拉拜).ПриемСигналовнаФонепомех[J].Белорусскийгосуда рственныйуниверситетинформатикиирадиозлектр оники,1995.

共引文献28

同被引文献36

  • 1林敏,黄咏梅.基于调制随机共振的转子故障早期检测[J].中国电机工程学报,2006,26(8):128-131. 被引量:20
  • 2林敏,黄咏梅.调制与解调用于随机共振的微弱周期信号检测[J].物理学报,2006,55(7):3277-3282. 被引量:47
  • 3王建英,尹忠科.基于稀疏分解的微弱信号检测方法[J].铁道学报,2007,29(2):114-117. 被引量:10
  • 4Yi wensuo, Shi yaowu, Nie chunyan. The chaotic oscillator estimate method for sin wave parameter in non- gaussian color noise environment [A] . The Sixth International Conference on Electronic Measurement and Instrument [C]. Harbin: 2004: 151 -155.
  • 5Zhang Wei and Xiang Bingren. A new single-well potential stochastic resonance algorithm to detect the weak signal [J]. Talanta, 2006, 70 (2): 267-271.
  • 6Aditya A. Saha and G. V. Anand. Design of detectors based on stochastic resonance [J]. Signal Processing, 2003, 83 (6): 1193- 1212.
  • 7Ian F Akyildiz, Won-Yeol Lee, Mehmet CVuran.Nextgeneration/dyna- mic spectrum access/cognitive radio wireless networks.A survey, computer networks50, 2006: 2127-2159.
  • 8Mitola J, Magurie G,Jr.Cognitive Radio: Making software radios more personal.IEEE personal Communications Magazine, 1999, 6(4):13-18.
  • 9Mitola J.Cognitive radio for flexible mobile multimedia communicatio- as.Mobile Multimedia Communications1999 (MoMuC 99), 1999 IEEE International Workshop on, Nov. 1999, 15: 3-10.
  • 10Haykin S.Cognitive radio: brain-empowered wireless communications. IEEE JSAC, 2005,23 (2) : 201-220.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部