期刊文献+

网络直复营销目标客户的优化模型——基于马尔代夫链的一种尝试

The Target Customer Resource Optimization Model Research in Internet Direct Marketing Which are Based on Markov Chains Theory
原文传递
导出
摘要 网络直复营销的实时沟通性、交互数据的易取得性及其低成本性,使其成为当前企业的重要营销工具,提高网络直复营销活动的响应率和收益率也成为了营销领域研究的热点。本文在将RFM这种简单的客户响应分析方法与马尔可夫链结合的基础上,利用P[τ>Tr,s,α<β,X=(x,t,T)]计算顾客在各个消费时间段f和各个购买频率的购买概率,并最终建立了网络直复营销中的目标客户资源优化模型。研究结果表明,模型克服了当前目标客户资源优化模型研究中对模型适用的条件要求较高的缺陷,模型通过马尔可夫转移矩逐步修改其负向收益状态,并对边缘状态值进行验证,通过只对最终收益为正的顾客提供营销资源,对最终收益为正之外的顾客要停止对其的营销资源投入,达到对于网络直复营销中目标客户优化及提升企业可获得利润率的作用。 Internet Direct Marketing'communication in real time, easy access to interactive data and it's low cost make it become enterprises'important marketing tool. Improving Internet Direct Marketing's response rates and profitability also become a research hotspot in the field of marketing. Based on combining RFM response analysis method with Markov Chain theory, using P[τ〉T|r,s,α〈β,X=(x,t,T)] to compute customer's purchase probability in each time period and each purchase frequency. At last, the target customer resource optimization model is established. This model overcomes current target customer resource optimization model's shortcoming which need a high applying requirement. Through modifying Markov transition matrix's negative profit state step by step, and verifying the borderline state value, this model can only provide marketing resources for positive profit customers, and stop providing marketing resources for customers outside of the positive profit customers. By this way, the target customer resource optimization in the internet directing marketing is finished and enterprises can also improve their gettable earnings.
作者 郑浩 赵翔
出处 《经济管理》 CSSCI 北大核心 2010年第12期143-150,共8页 Business and Management Journal ( BMJ )
基金 山东省中青年科学家科研奖励基金"基于模块化营销组织构建视角的服务业竞争能力生成机制研究"(BS2009SF006) 教育部人文社科一般项目"服务业模块化组织的设计 运行与价值创新"(09YJC790173) 山东省自然科学基金"模块营销提升山东省国有企业自主创新能力的机理与实证研究"(Y2008A26)
关键词 网络直复营销 马尔可夫链 目标客户资源优化 RFM internet direct marketing markov chain target customer resource optimization RFM
  • 相关文献

参考文献15

  • 1Adams J. Stancy. Inequity In Social Exchange. in: Lenard Berkowitz,ed. Advances in Experimental Social Psychology[ M ]. New York : Academic Press, 1965.
  • 2Ben Shaw-Ching Liu, Petruzzi, Nicholas C. , Sudharshan, D. A Service Effort Allocation Model for Assessing Customer Lifetime Value in Service Marketing [ J ]. Journal of Services Marketing,2007,21, ( 1 ) : 24 - 35.
  • 3Berger P D, Bechwati N N. The Allocation of Promotionbudget to Maximize Customer Equity [ J ]. Omega, 2001, ( 29 ) : 49 -61.
  • 4Cheng, Ching-Hsue; Chen, You-Shyang. Classifying The Segmentation of Customer Value Via RFM Model and RS Theory [ J ]. Expert Systems with Applications,2009,36, (3) :4176 - 4184.
  • 5Emine Persentili Batislam, Mehem Denizel, Alpay Filiztekin. Empirical Validation and Comparison of Models for Customer Base Analysis [ J ]. International Journal of Research in Marketing, 2007,24, (3) : 201 - 209.
  • 6Hughes, Arthur Middleto. Boosting Response with RFM [ J ]. Marketing Tools, 1996,3, (3) :4 - 8.
  • 7John A. McCarty, Manoj Hastak. Segmentation Approaches in Data-mining : A Comparison of RFM, CHAID, and Logistic Regression [ J ]. Journal of Business Research,2007,60, (6) :656 - 662.
  • 8Kamakura, Wagner A. , Wedel, Michel, de Rosa, Femando, Mazzon, Jose Afonso. Cross-selling Through Database Marketing: A Mixed Data Factor Analyzer for Data Augmentation and Prediction [ J ]. International Journal of Research in Marketing, 2003,20, ( 1 ) :45 -65.
  • 9Oliver, Richard L, John E. Swan. Consumer Perceptions of Interpersonal Equity and Satisfaction in Transactions : A Field Survey Approach [ J ]. Journal of Marketing, 1989,53, (2) : 21 - 35.
  • 10Paas, Leonard. Acquisition Pattern Analysis for Evolutionary Database Marketing [ J ]. Service Industries Journal,2009,29, (6) : 805 -812.

二级参考文献32

  • 1蔡文 杨春燕 等.可拓工程方法[M].北京:科学出版社,2000..
  • 2[美]KotlerP ArmstrongG著 俞利军译.营销学导论[M].北京:华夏出版社,1997.624-633.
  • 3Berger P D, Bechwati N N. The allocation of promotion budget to maximize customer equity [ J ]. Omega, 2001,29:49 - 61.
  • 4Dwyer F R. Customer lifetime valuation to support marketing decision making[J ]. Journal of Direct Marketing, 1989,8(2) :73 - 81.
  • 5Tao Y H, Rosa Yeh C C. Simple database marketing tools in customer analysis and retention[J]. International Journal of Information Management,2003,23:291 - 301.
  • 6Cohen M D. Exploiting response models:optimizing crosssell and up- sell opportunities in banking[J ]. Information Systems,2004,29(4) :327 - 341.
  • 7Miglautsch J. Thoughts on RFM scoring[J]. The Journal of Database Marketing, 2000,8 (1): 35 - 43.
  • 8Schell E. The case for database marketing[J]. Catalog Age,2003,20(2) :50.
  • 9Hughes M A. Boosting response with RFM[J]. American Demographics, 1996, (5) :4 - 9.
  • 10Hughes M A. Making your database pay off using recency frequency and monetary analysis[ Z]. Http://www. dbmarketing, com/articles/art104a, htm.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部