期刊文献+

Hamilton-Jacobi方程的对称约化和精确解

Symmetry Reductions and Exact Solutions of Hamilton-Jacobi Equations
下载PDF
导出
摘要 对称群法是研究非线性偏微分方程对称约化和精确解的有效方法。本文利用广义条件对称方法研究容许二阶广义条件对称的Hamilton-Jacobi方程。对一些类型的Hamilton-Jacobi方程,我们得到了该类方程的对称约化和精确解。 The symmetry group related methods have been proven to be effective to study the sym-metry reductions and exact solutions of nonlinear partial differential equations.The conditional Lie-B¨acklund symmetry method is developed to study Hamilton-Jacobi equations which admit second order conditional Lie-Bcklund symmetries.For certain equations,symmetry reductions and exact solutions to the resulting equations are obtained.
机构地区 西北大学数学系
出处 《工程数学学报》 CSCD 北大核心 2010年第6期1091-1095,共5页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10671156) 西北大学科研基金(NC0922)~~
关键词 HAMILTON-JACOBI方程 广义条件对称(CLBS) 精确解 Hamilton-Jacobi equations conditional Lie-Bcklund symmetry solutions
  • 相关文献

参考文献6

  • 1Crandall M G,Lions P L.Viscosity solutions of Hamilton-Jacobi equations[J].Transactions of the American Mathematical Society,1983,277:1-42.
  • 2Galaktionov V A,Vazquez J L.Blow-up for quasilinear heat equations described by means of nonlinear Hamilton-Jacobi equations[J].Journal of Differential Equations,1996,127:1-40.
  • 3尚亚东,郭柏灵.一类拟线性拟抛物型积分微分方程的初边值问题[J].工程数学学报,2003,20(4):1-6. 被引量:9
  • 4林彬,李开泰.非线性微分方程的微分变换方法(英文)[J].工程数学学报,2009,26(6):1137-1140. 被引量:1
  • 5Bluman G W,Kumei S.Symmetries and Differential Equation[M].New York:Springer,1989.
  • 6Zhdanov R Z.Conditional Lie-Backlund symmetry and reductions of evolution equations[J].Journal of Physics A:Mathematical and Theoretical,1995,128:3841-3850.

二级参考文献18

  • 1王书彬.半线性拟双曲型积分微分方程的初边值问题和初值问题[J].应用数学学报,1995,18(4):567-578. 被引量:15
  • 2朱位秋.弹性杆中的非线性波[J].固体力学学报,1980,1(2):247-253.
  • 3Zhou J K. Differential Transformation and its Application for Electrical Circuits[M]. Wuhan: Huazhong University Press, 1986.
  • 4Chen C K, Ho S H. Solving partial differential equations by two dimensional differential transform method[J]. Appl Math Comput, 1999, 106:171-179.
  • 5Abdel-Halim Hassan I H. Different applications for the differential transformation in the differential equations[J]. Appl Math Comput, 2002, 129:183-201.
  • 6Fife P C. Mathematical Aspects of Reacting and Diffusing Systems[M]. Berlin: Springer, 1977.
  • 7Murray J D. Nonlinear Differential Equation Models in Biology[M]. Oxford: Clarendon Press, 1977.
  • 8Engler H. Weak solutions of a class of quasilinear hyperbolic integrodifferential equations describing viscoelastic materials[ J ]. Arch Rational Mech Anal, 1991 , 113 : 1 - 38.
  • 9Londen S O. Some existence results for a nonlinear hyperbolic integrodifferential equation with singular kernel[J].J Integral Equations Appl, 1991 ,3:3- 30.
  • 10Yin H M. Weak and classical solutions of some nonlinear Volterra integrodifferential equations[J]. Comm Partial Diff Eqs, 1992 , 17(7&8) : 1369 - 1385.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部