期刊文献+

整数自仿Tiling的Tile数字集(英文)

Tile Digit Sets of Integral Self-affne Tilings
下载PDF
导出
摘要 关于由一个扩张矩阵A∈Mn(Z)和数字集D={d1,d2,...,dm}■Zn生成的整数自仿Tiling,已经有很多研究结果。其中一个重要的问题是判定一个数字集在什么条件下能生成一个Tile。在一维情况下,已知结果有:标准数字集,乘积形式数字集,弱乘积形式数字集都是Tile数字集。在本文中,我们把弱乘积形式的概念推广到高维,并证明它们都是Tile数字集。 Integral self-affne tilings generated by an expanding integer matrix A ∈ Mn(Z) and D ={d1,d2,...,dm} lohtain in Zn have been studied by many works.An important problem is to decide when a digit set gives us a tile(and then we call it a tile digit set).It is shown that the standard digit sets by Bandt,product form digit sets by Lagarias and Wang,and weak-product form digit sets in R1 by Lau and Rao are tile digit sets.In this paper,we generalize the notion of weak product form to higher dimensions and prove that they are tile digit sets.
出处 《工程数学学报》 CSCD 北大核心 2010年第6期1129-1132,共4页 Chinese Journal of Engineering Mathematics
关键词 整数自仿Tile 标准数字集 乘积形式数字集 弱乘积形式数字集 integral self-affne tiling standard digit set product form digit set weak-product form digit set
  • 相关文献

参考文献6

  • 1Lagarias J C,Wang Y.Self-affine tiles in Rn[J].Advances in Mathematics,1996,121:21-49.
  • 2Hutchinson J E.Fractals and self-similarity[J].Indiana University Mathematics Journal,1981,30:713-747.
  • 3Bandt C,Self-similar sets V.Integer matrices and fractal tilings of Rn[J].Proceedings of the American Mathematical Society,1991,112(2):549-562.
  • 4Lagarias J C,Wang Y.Integral self-affine tiles in Rn II lattice tilings[J].Journal of Fourier Analysis and Applications,1997,3:84-102.
  • 5Lau K S,Rao H.On one-dimensional self-similar tilings and pq-tiles[J].Transactions of the American Mathematical Society,2003,355(4):1401-1414.
  • 6Kenyon R.Self-replicating tilings[C]// Symbolic Dynomics and its Applications,Contemporary Mathematics Series,(P.Walters,ed.),Province:American Mathematical Society,RI,1992,135:239-263.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部