期刊文献+

溶胶-凝胶法制备Li_4Ti_5O_(12)/C复合负极材料及性能研究 被引量:1

Preparation and performance of Li_4Ti_5O_(12)/C composite anode materials by sol-gel method
下载PDF
导出
摘要 以醋酸锂、钛酸丁酯为原料,草酸为络合剂和碳源,采用溶胶-凝胶法氮气气氛中合成锂离子电池负极材料Li4Ti5O12/C,研究了锂源过量与否对材料结构和电化学性能的影响。采用XRD、SEM对材料的晶体结构和微观形貌进行表征,采用恒流充放电循环测试对材料的电化学性能进行表征。结果表明:当锂源过量5%时,合成的Li4Ti5O12/C材料为单一的尖晶石结构,且样品粒径较小(约100~150 nm),有利于锂离子的嵌入与脱出。其在0.2、1.0、2.0 C和5.0 C时的首次放电比容量分别为182.5、162.7、155.7 mAh/g和155.3 mAh/g,且5.0 C倍率下循环50次后仍达153.9mAh/g,表现出较好的高倍率放电性能和循环稳定性。 Li4Ti5O12/C composite anode materials for lithium-ion battery were synthesized in N2 by sol-gel method using lithium acetate and tetrabutyl titanate as raw materials,oxalic acid as chelating agent and carbon source.And the effect of lithium source amount on the structure and electrochemical properties of the as-prepared composites was systematically investigated in this paper.The crystal structure and microstructure were characterized by means of XRD and SEM,and the electrochemical properties of samples were evaluated by constant-current charge-discharge cycling test.The results show that Li4Ti5O12/C composite with 5% excess of lithium source exhibits a phase-pure spinel structure and much smaller particle size(about 100~150 nm),which is believed to be beneficial for the insertion/deinsertion of lithium ions.It delivers the initial discharge capacities of 182.5,162.7,155.7 mAh/g and 155.3 mAh/g at 0.2,1.0,2.0 C and 5.0 C rates respectively,which can also reach 153.9 mAh/g after 50 cycles at 5.0 C rate,showing excellent high-rate dischargeability and cycling stability.
出处 《电源技术》 CAS CSCD 北大核心 2010年第12期1236-1238,1251,共4页 Chinese Journal of Power Sources
关键词 Li4Ti5O12/C 负极材料 溶胶-凝胶法 电化学性能 Li4Ti5O12/C anode materials sol-gel method electrochemical properties
  • 相关文献

参考文献11

  • 1PROSINI P P,MANCINI R,PETRUCCI L,et al.Li4Ti5O12 as anode in all-solid-state plastic lithium ion batteries for low-power applications[J].2001,144(1/2):185-192.
  • 2ZAGHIB K,SlMONEAU M,ARMAND M,et al.Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries[J].J Power Sources,1999,81-82:300-305.
  • 3ALLEN J L,JOW T R,WOLFENSTINE J.Low temperature performance of nanophase Li4Ti5O12[J].J Power Sources,2006,159 (2):1340-1345.
  • 4LI Yue ZHAO Hailei TIAN Zhihong QIU Weihua LI Xue.Heat treatment effect on electrochemical properties of spinel Li_4Ti_5O_(12)[J].Rare Metals,2008,27(2):165-169. 被引量:11
  • 5HAO Y J,LAI Q Y,XU Z H,et al.Synthesis by TEA sol-gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery[J].Solid State Ionics,2005,176(13/14):1201-1206.
  • 6YIN S Y,SONG L,WANG X Y,et al.Synthesis of spinel Li4Ti5O12 anode material by a modified rheological phase reaction[J].Elec-trochim Acta,2009,54(24):5629-5633.
  • 7WANG G J,GAO J,FU L J,et al.Preparation and characteristic of carbon-coated Li4Ti5O12 anode material[J].J Power Sources,2007,174(2):1109-1112.
  • 8ALLEN J L,JOW T R,WOLFENSTINE J.Low temperature performance of nanophase Li4Ti5O12[J].J Power Sources,2006,158(2):1340-1345.
  • 9ANDERSSON A S,THOMAS J O.The source of first-cycle capacity loss in LiFePO4[J].J Power Sources,2001,97-98:498-502.
  • 10YANG S,SONG Y,ZAVALIJ P Y,et al.Reactivity,stability and electrochemical behavior of lithium iron phosphates[J].Electro-chem Commun,2002,4(3):239-244.

二级参考文献10

  • 1Roberton A.D., Tukamoto H., and Irvine J.T.S., Li1+xFe1-3xTi1+2xO4 (0.0 ≤ x ≤0.33) based spinels: Possible negative electrode materials for future Li-ion battery, J. Electrochem. Soc., 1999, 146 (11): 3958.
  • 2Koksbang R., Barker J., and Shi H., Cathode materials for lithium rocking chair batteries, Solid State Ionics, 1996, 84 (3): 1.
  • 3Ohzuku T., Kitagawa M., and Hirai T., Electrochemistry of manganese dioxide in lithium nonaqueous cell, J. Electrochem. Soc., 1990, 137 (1): 40.
  • 4Tokumitsu K., Mabuchi A., Fujimoto H., and Kasuh T., Charge/discharge characteristics of synthetic carbon anode for lithium second battery, J. Power Sources, 1995, 54 (1): 444.
  • 5Matsumura Y., Wang S., and Mondori J., Mechanism leading to irreversible capacity loss in Li ion rechargeable battery, J. Electrochem. Soc., 1995, 142 (9): 2914.
  • 6Ohzuku T., Ueda A., and Yamamoto N., Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells, J. Electrochem. Soc., 1995, 142 (2): 1431.
  • 7Yang J., Zhong H., Zhong H.Y., Li J., and Dai Y.Y., Synthesis and influential factors of Li4Ti5O12, J. Cent. South Univ. (in Chinese), 2005, 36 (1): 55.
  • 8Shi M.L., Chen Z.Y., and Sun J., Determination of chloride diffusivity in concrete by AC impedance spectroscopy, Cem. Concr. Res., 1999, 29 (1): 1111.
  • 9Bach S., Pereira-Ramos J., and Baffler P.N., Electrochemical properties of sol-gel Li4Ti5O12, J. Power Sources, 1999, 81-82 (1): 273.
  • 10Rho Y.H. and Kanamura K., Li-ion diffusion in Li4TisO12 thin film electrode prepared by PVP sol-gel method, J. Solid State Chem., 2004, 177 (2): 2094.

共引文献10

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部