期刊文献+

SRAD-QFT鲁棒优化设计新方法

Method for optimizing QFT robust control system
下载PDF
导出
摘要 针对使用定量反馈理论进行控制系统设计时存在的鲁棒性度量等问题,结合随机鲁棒分析与设计原理,提出一种鲁棒优化设计新方法.该方法使用被控对象参数的统计信息对参数不确定性进行描述,基于闭环控制系统的蒙特卡罗仿真,将获得的闭环控制系统不稳定概率及各项性能指标的不满足概率作为闭环控制系统稳定鲁棒性和性能鲁棒性的度量,并在此基础上实现闭环控制系统的鲁棒优化设计.由某型超声速反舰导弹纵向运动控制系统的设计过程表明:该方法能够准确地描述被控对象的参数不确定性,有效解决控制系统的鲁棒性度量问题,适用于复杂控制系统的设计. A method for optimizing the quantitative feedback theory(QFT) robust controller was presented based on stochastic robustness analysis and design(SRAD) methodology,which solved the problems,such as inadequate robustness measures in existing optimization methods for QFT robust controller.With SRAD-QFT,the probability of instability and the probabilities of unsatisfied performances of the closed-loop control system were achieved by Monte Carlo evaluation.The stability robustness and performance robustness measurements for the closed-loop control system were provided by these probabilities,based on which the QFT controller and pre-filter could be designed simultaneously.The longitudinal flight control system design for a supersonic anti-ship missile using SRAD-QFT shows that this method can accurately descript the parametric uncertainty of the plant and provide the robustness measurements of the closed-loop control system.Also,it is suitable for designing the complicated system.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2010年第11期1325-1329,共5页 Journal of Beijing University of Aeronautics and Astronautics
关键词 鲁棒控制 定量反馈理论 随机鲁棒分析与设计 robust control quantitative feedback theory stochastic robustness analysis and design
  • 相关文献

参考文献12

  • 1富强,尔联洁,赵国荣.基于定量反馈理论的飞行仿真转台鲁棒控制[J].北京航空航天大学学报,2004,30(5):410-413. 被引量:7
  • 2Stout Perry Waiter. Combined dynamic inversion and QFT flight control of an unstable high performance aircraft[ D ]. Davis: Of- fice of Graduate Studies ,University of California, 1999.
  • 3Houpis C H,Rasmussen S J,Garc a Sanz Mario,et al. Quantita- tive feedback theory: fundamentals and applications [ M]. 2nd ed. Boca Raton,FL :CRC Taylor & Francis,2006.
  • 4Yaniv Oded. Quantitative feedback design of linear and nonlinear control systems[ M ]. Dordrecht : Kluwer Academic Publishers, 1999.
  • 5Chen Qian, Chait Yossi, Hollot C V. On the convexity of QFT bounds and its relation to automatic loop-shaping [ C ]// Pro- ceedings of American Control Conference. San Diego: [ s. n. ], 1999 : 1425 - 1426.
  • 6Chait Yossi, Chen Qian, Hollot C V. Automatic loop-shaping of QFT controllers via linear programming[ J]. Journal of Dynamic Systems, Measurement, and Control, 1999,121 ( 3 ) :351 - 357.
  • 7Tan K C,Lee T H, Khor E F. Control system design automation with robust tracking thumbprint performance using a multi-objec- tive evolutionary algorithm [ C ]// Proceedings of the 1999 IEEE,International Symposium on Computer Aided Control Sys- tem Design. Kohala Coast : IEEE, 1999:498 - 503.
  • 8Tan K C, Lee T H ,Khor E F. Automatic design of muhi-variable quantitative feedback theory control systems via evolutionary computation[ J ]. Proceedings of the Institution of Mechanical Engineers Part Ⅰ: Journal of Systems and Control Engineering, 2001,215 (3) :245 -259.
  • 9Chen Wenhua, Balance Donald J, Feng Wenyuan, et al. Genetic algorithm enabled computer-automated design of QFT control systems [ C ]// Proceedings of the 1999 IEEE,International Sym- posium on Computer Aided Control System Design. Kohala Coast : IEEE, 1999:492 - 497.
  • 10Lu Enha, Zhao Changan. Automatic loop-shaping method in NLQFT and its application in aircraft control[ C ]// Proceed- ings of IEEE, Conference on Cybernetics and Intelligent Sys- tems. Singapore : IEEE, 2004 : 185 - 189.

二级参考文献3

  • 1[1]Horowitz Issac. Survey of quantitative feedback theory [J] . International Journal of Control, 1991,53(2): 255 ~ 291
  • 2[2]Houpis C H ,Rasmusen S J. Quantitative feedback theory fundamentals and applications[M]. New York: Marcel Dekker, 1999
  • 3[3]Yaniv D. Quantitative feedback design of linear and nonlinear control system[M]. Boston: Kluwer, 1999

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部