期刊文献+

多元量子LDPC码的构造与译码 被引量:4

Construction and decoding of nonbinary quantum LDPC codes
下载PDF
导出
摘要 基于多元稳定子理论,提出一类有限域上多元量子LDPC码的构造方法,在退极化信道模型下对多元量子码的BP译码算法进行了描述.举例构造了一类CSS结构、码率为1/2和1/4的四元量子LDPC码,并对其纠错性能进行了Monte Carlo仿真.与现有同等参数的二元量子LDPC码相比,误帧率10-5时的信道转移概率阈值由0.016提高到0.025. Nonbinary quantum codes are more suitable for error-correction in multi-level quantum systems. Based on stabilizer formalism over the finite field, a class of nonbinary quantum LDPC codes is presented in this paper. And the BP iterative decoding algorithm for these codes is described under the quantum depolarizing channel with the Monte Carlo simulation method. For example, a class of CSS structure 4-ary quantum LDPC codes is given with code rates 1/2 and 1/4. Compared with the present binary quantum LDPC codes of equivalent codelength, the channel threshold with 10^-5 FER is improved from 0. 016 to 0. 025.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2010年第6期1005-1010,共6页 Journal of Xidian University
基金 国家自然科学基金资助项目(60972046) 国家部委预研基金资助项目
关键词 量子信息 LDPC码 量子LDPC码 BP算法 quantum information LDPC code quantum LDPC code BP algorithm
  • 相关文献

参考文献14

  • 1Shor P W.Scheme for Reducing Decoherence in Quantum Computer Memory[J].Phys Rev A,1995,52(4):2493-2496.
  • 2李卓,邢莉娟,王新梅.量子常数循环码[J].西安电子科技大学学报,2009,36(1):48-51. 被引量:3
  • 3李卓,邢莉娟,王新梅.一类量子循环码的构造方法[J].西安电子科技大学学报,2007,34(2):187-189. 被引量:5
  • 4Calderbank A R,Shor P W.Good Quantum Error-correcting Codes Exist[J].Phys Rev A,1996,54(2):1098-1105.
  • 5MacKay D.Good Eoor-Correcting Codes Base on very Sparse Matrix[J].IEEE Trans on Information Theory,1999,45(5):399-431.
  • 6MacKay D,Mitchison G,McFadden P.Sparse-graph Codes for Quantum Error Correction[J].IEEE Trans on Information Theory,2004,50(10):2315-2330.
  • 7Aly S A.A Class of Quantum LDPC Codes Constructed From Finite Geometries[C]//IEEE Globecom.New Orleans:IEEE,2008:1097-2101.
  • 8Tan Peiyu,Li Jing.New Classes of LDPC Stabilizer Codes Using Ideas from Matrix Scrambling[C]//IEEE International Conference on Communications.Beijing:IEEE,2008:1166-1170.
  • 9Leifer M,Poulin D.Quantum Graphical Models and Belief Propagation[J].Ann Phys,2008,323(8):1899-1946.
  • 10Poulin D,Chung Yeojin.On the Iterative Decoding of Sparse Quantum Codes[J].International Journal of Quantum Information and computation,2008,8(10):987-995.

二级参考文献24

  • 1刘太琳,温巧燕,刘子辉.非二元量子循环码的一种图论方法构造[J].中国科学(E辑),2005,35(6):588-596. 被引量:7
  • 2李卓,邢莉娟,王新梅.一类量子循环码的构造方法[J].西安电子科技大学学报,2007,34(2):187-189. 被引量:5
  • 3Ketkar A, Klappeneeker A, Kumor S, et al. Nonbinary Stabilizer Codes over Finite Fields [J]. IEEE Trans on Inform Theory, 2006, 52(12): 4892-4914.
  • 4Shor P W. Scheme for Reducing Decoherence in Quantum Memory [J]. Phys Rev A, 1995, 52(4) : 2493-2496.
  • 5Steane A M. Error Correcting Codes in Quantum Theory [J]. Phys Rev Lett, 1996, 77(5): 793-797.
  • 6Laflamme R, Miquel C, Paz J P, et al. Perfect Quantum Error Correction Code [J]. Phys Rev Lett, 1996, 77(2) : 198- 201.
  • 7Calderbank A R, Shor P W. Good Quantum Error-correcting Codes Exist [J]. Phys Rev A, 1996, 54(2): 1098-1105.
  • 8Steane A M. Multiple Particle Interference and Quantum Error Correction [J]. Proc Roy Soc Lond A, 1996, 452(1954) : 2551-2577.
  • 9Gottesman D. Class of Quantum Error-correcting Codes Saturating the Quantum Hamming Bound [J]. Phys Rev A, 1996, 54(3) : 1862-1868.
  • 10Calderbank A R, Rains E M, Shor P W, et al. Quantum Error Correction and Orthogonal Geometry [J]. Phys Rev Lett, 1997, 78(3): 405-408.

共引文献6

同被引文献46

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部