期刊文献+

基于非下采样Contourlet变换的交通图像融合方法研究 被引量:1

Traffic Image Fusion Algorithm Based on Non-Sampled Contourlet Transform
下载PDF
导出
摘要 电视监控是智能交通监控系统的一个重要组成部分,其目的是通过对视频交通图像处理进行车辆、行人、环境等的监控.根据非下采样Contourlet变换具有多分辨率、多方向性和平移不变性的特点,提出了一种基于非下采样Contourlet变换的多聚焦交通图像融合方法.融合策略采用低频系数取平均,高频系数基于邻域、兄弟和父节点信息的区域特征衡量取最大值法.将本文的方法与小波变换、脊波变换及Contourlet变换相比较,实验结果表明,该方法取得了更好的融合效果,提高了图像质量,满足智能交通监控系统的要求. The TV monitor is an important part of the intelligent transportation monitoring system.Its purpose is monitoring the vehicles,pedestrians,and environment through the video traffic image processing.According to the non-sampled Contourlet transform with the characteristics of multi-resolution,multi-directional,and translational invariance,the paper proposes a multi-focus image fusion algorithm based on the non-sampled Contourlet transform.The fusion strategy is that the low-frequency coefficient is used to calculate the average and the high-frequency coefficients are taken the greatest regional characteristics weight based on neighborhood,brother and parent information.After comparing the present method with the wavelet transform,the ridgelet transform,and Contourlet transform,the experimental results prove that the method mentioned in this paper can achieve a better fusion of results and can improve the image quality and meet the requirements of intelligent transportation control system.
出处 《交通运输系统工程与信息》 EI CSCD 2010年第6期48-52,共5页 Journal of Transportation Systems Engineering and Information Technology
基金 教育部博士点基金(20096102110027) 陕西省科学技术研究发展计划项目(2008K07-14)
关键词 智能交通系统 图像融合 非下采样CONTOURLET变换 区域特征衡量 多聚焦交通图像 intelligent transportation systems image fusion non-sampled Contourlet transform regional characteristics weight multi-focus traffic image
  • 相关文献

参考文献8

  • 1朱晓岚.智能交通视频监控系统的分析与应用[J].中国科技博览,2010(23):6-7. 被引量:2
  • 2Candes E J. Ridgelets: Theory and applications [ D]. Department of Statistics, Stanford University, 1998.
  • 3Do M, Vetterli M. The contourlet transform: An effi- cient directional multi-resolution image representation [ J]. IEEE Transaction on Image Processing, 2005, 14(12) :2091 -2106.
  • 4COIFMA R R. DONOHO D L. Translation invariant de-noising[ EB/OL]. [ 2006 - 12 - 26 ]. http:// www. stanford end/- donoho/report html#1995.
  • 5CUNHA A L, ZHOU J P, DO M N. The non-subsam- pied Contourlet transform: theory, design and applica- tions[J]. IEEE trans on Image Processing, 2006,15 (10) :3089 -3101.
  • 6韩双喜,储彬彬,汪冬梅.基于非下采样Contourlet变换的图像融合算法[J].电子质量,2010(1):1-3. 被引量:1
  • 7闫建文,屈小波.小波分析及应用[M].北京:国防工业出版社,2008.
  • 8Hao Chen, Pramod K, Varshney. A human perception inspired quality metric for image fusion based on re- gional information [ J ]. Information Fusion a (2007) 193 - 207.

二级参考文献2

共引文献1

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部