期刊文献+

基于拟合优度度量的交通方式选择决策树结构研究 被引量:4

Study of Decision Tree Structure of Traffic Mode Choice Based on the Goodness of Fit Measure
下载PDF
导出
摘要 Nested-Logit(NL)模型是交通方式划分的最重要的模型之一,在分析公共交通和个人交通划分方法的理论依据的基础上,根据人们在选择交通方式过程中首要考虑因素的不同,构造了不同于公共交通和个人交通的虚拟交通方式——高费用和低费用虚拟交通方式,并分析其内相关性.在两个交通方式选择决策树结构都存在相关性和合理性的情况下,提出基于拟合优度度量比较两者的优劣,从而选定交通方式选择决策树结构.根据实例旅客出行调查数据,利用SAS软件实现两个交通方式选择决策树结构的拟合度度量分析.结果表明:基于拟合优度度量选定的高费用和低费用虚拟交通方式比公共交通和个人交通的虚拟交通方式更接近实际调查值,此方法具有一定的实用性. Nested-Logit model(NL model) is one of the most important models in traffic modal split,based on theoretical basis of the method of traffic modal split for public traffic and private traffic,according to the different factors of people's first considering in the middle part,the paper constructed virtual traffic modes different from public traffic and private traffic—high-cost and low-cost virtual traffic modes,and analyzed the correlation of alternatives in virtual traffic.the paper also proposed method of choosing the better decision tree structure of traffic mode choice based on goodness of fit measures.According to passenger travel survey data in the example,using SAS software,the paper comparatively analyzed the goodness of fit measure,and the results showed that: the choice probabilities from high-cost and low-cost virtual traffic modes based on the goodness of fit measure can better closer to the survey value.This method is useful in application.
出处 《交通运输系统工程与信息》 EI CSCD 2010年第6期128-132,共5页 Journal of Transportation Systems Engineering and Information Technology
关键词 城市交通 决策树结构 NL模型 拟合优度度量 交通方式之间的相关性 urban traffic decision tree structure NL mode goodness of fit measure correlation among traffic models
  • 相关文献

参考文献9

  • 1聂冲,贾生华.离散选择模型的基本原理及其发展演进评介[J].数量经济技术经济研究,2005,22(11):151-159. 被引量:96
  • 2Kenneth E Train. Discrete choice methods with simula- tion [ M ]. Cambridge University Press,2009:77 - 79.
  • 3Ben-Akiva M, Bierlaire M. Discrete choice methods and their applications in short term travel decisions [ M ]. The Handbook of Transportation Science, 1999:5 -33.
  • 4Small K. A discrete choice model for ordered alterna- tives [ J ]. Econometrica, 1987,55:409 - 424.
  • 5Chu C. A paired combinational logit model for travel demand analysis [ C ]//Proceedings of Fifth Word Con- ference on Tranportation Research, 1989,4:295 - 309.
  • 6Wen C H, Koppelman F. The generalized nested logit model [ J ]. Transportation Research B, 2001,35 : 627 - 641.
  • 7胡华,滕靖,高云峰,周雪梅.多模式公交信息服务条件下的出行方式选择行为研究[J].中国公路学报,2009,22(2):87-92. 被引量:32
  • 8CHOI K H, MOON C G. Generalized extreme value model and additively separable generator function [ J ]. Journal of Econometrics, 1997,76 ( 1 ) :129 - 140.
  • 9SAS/ETSR 9.2 User' s Guide[ M] . Cary,NC:SAS In- stitute Inc. 2008:913 -917.

二级参考文献51

  • 1周建,王树盛,隋水仙.巢式Logit交通方式划分模型及求解方法研究[J].山东交通学院学报,2005,13(4):28-31. 被引量:14
  • 2裴玉龙,马骥.信息对城市居民出行影响的调查与分析[J].哈尔滨工业大学学报,2006,38(2):226-230. 被引量:3
  • 3刘振,周溪召.巢式Logit模型在交通方式选择行为中的应用[J].上海海事大学学报,2006,27(3):66-70. 被引量:20
  • 4姚荣涵,王殿海.模拟量子跃迁的出行方式转移模型[J].交通运输工程学报,2007,7(3):111-115. 被引量:6
  • 5KENYON S,LYONS G. The Value of Integrated Multimodal Traveler Information and Its Potential Contri- bution to Modal Change[J]. Transportation Research Part F,2003,6(1):1 21.
  • 6HONG K L,YIP C W,WAN Q K. Modeling Competi tive Multi-modal Transit Services:a Nested Logit Approach[J]. Transportation Research Part C, 2004, 12 (3) :251-272.
  • 7Ainslie, A. , R. Andrews and I. Curfim (2001), An empirical comparison of logit choice models with discrete vs. continuous representation of heterogeneity, working Paper, Department of Business Administration, University of Delaware.
  • 8Ben - Akiva, M. (1972), The Structure of Travel Demand Models [D], PhD thesis, MIT.
  • 9Ben - Akiva, M. and D. Boldue (1996), Multinomial probit with a logit kernel and a general parametric specification of the covariance structure, Working Paper, Department of Civil Engineering, MIT.
  • 10Ben - Akiva, M. and S. Lerman (1985), Discrete Choice Analysis: Theory and Application to Travel Demand [M], MIT Press, Cambridge, Massahusetts.

共引文献125

同被引文献25

  • 1刘宇峰,安韬,钱一之,郭季.不同规模城市居民出行方式影响因素分析[J].中国公路学报,2022,35(4):286-297. 被引量:10
  • 2杨胜,李莉,胡福乔,施鹏飞.基于决策树的城市短时交通流预测[J].计算机工程,2005,31(8):35-36. 被引量:9
  • 3梁凯,姚高尚,简虎,熊腊森.微电子封装无铅钎焊的可靠性研究[J].电焊机,2006,36(5):18-21. 被引量:6
  • 4Kenneth E T. Discrete choice methods with simulation [M]. New York: Cambridge University Press, 2002.
  • 5Ben-Akiva M E, Lerman S R. Discrete choice ana-lysis: theory and application to travel demand[M]. Cam- bridge : MIT Press, 1985.
  • 6Hensher D A, Rose J M, Greene W H. Applied choice analysis:a primer[M]. New York:Cam-bridge Univer- sity Press. 2005.
  • 7Nagui M. Rouphail, H. Christopher Frey,James D. Co-lyar, Alper Unal. vehicle emissions and traffic meas- ures~ exploratory analysis of field observations at sig- nalized arterials[J]. Transportation Research Board. Washington,D. C. ,2001.
  • 8欧训民,张希良.我国煤基、生物质液体燃料及电力碳强度研究--发展低碳交通燃料,应对全球气候变化[J].中国人口资源与环境,2009,19:207-212.
  • 9Shuyan Chen, Wei Wang. Decision tree learning for freeway automatic incident detection[J]. Expert Sys- tems with App!ications,2009,36:4101 --4105.
  • 10王晓原,杨新月.基于决策树的驾驶行为决策机制研究[J].系统仿真学报,2008,20(2):415-419. 被引量:19

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部