期刊文献+

基于稳健轮回搜索的Bayes估计法在地壳形变分析中的应用 被引量:1

APPLICATION OF BAYES ESTIMATION BASED ON ROBUST CYCLIC SEARCHING IN CRUSTAL DEFORMATION ANALYSIS
下载PDF
导出
摘要 将地球物理模型估计的形变量与GPS几何观测量结合进行形变分析时,由于受各种因素的影响,地球物理模型参数难免存在不可靠现象,直接应用这种不可靠信息进行参数估计,会影响参数解的可靠性。将地球物理模型估计的形变信息作为先验信息,与几何观测量相结合进行形变分析,并提出一种能够有效修正不可靠先验信息的基于稳健轮回搜索的Bayes估计方法。考虑到异常形变点或大的观测误差对轮回搜索结果存在较大影响,又提出用高崩溃污染率的稳健估计法来确定能够代表块体均匀应变的一组相对稳定的点,由这些相对稳定点组计算搜索函数,确保先验信息的可靠性。最后利用一实测GPS监测网进行计算,结果表明稳健轮回搜索可以有效地对失真先验信息进行修正,提高模型参数解的精度。 When combining geophysical information with geodetic observation for crustal deformation analysis there may be unreliable parameters.The Bayes estimation based on robust cyclic searching is proposed,in which the deformation predicted by geophysical model as priori information in geodetic(GPS) measurements processing is used and the cyclic searching is adopted to modify improper priori information.Taking into account the abnormal observation station moving or outliers in measurements may influences the searching results,we calculate searching functions from selected stable stations by robust cyclic searching.The new method is applied in a GPS monitoring net.It is shown that the robust cyclic searching is effective in modifying priori information and improving the accuracy of model parameter.
出处 《大地测量与地球动力学》 CSCD 北大核心 2010年第6期37-41,共5页 Journal of Geodesy and Geodynamics
基金 国家自然科学基金(40774001 40841021 40902081) 国家863计划项目(2007AA12Z331)
关键词 地壳形变 几何观测量 地球物理模型 BAYES估计 稳健轮回搜索 crustal deformation geometric observation geophysical model Bayes estimation robust cyclic searching
  • 相关文献

参考文献6

二级参考文献44

  • 1伍吉仓,陈永奇,许才军.活断层形变数据反演[J].测绘学报,2000,29(z1):53-58. 被引量:2
  • 2CUI Xianqiang YANG Yuanxi.Adaptively robust filtering with classified adaptive factors[J].Progress in Natural Science:Materials International,2006,16(8):846-851. 被引量:27
  • 3丁国瑜 卢演俦.对我国现代板内运动状况的初步探讨[J].科学通报,1986,18:1412-1415.
  • 4陈运泰 林邦慧 等.根据地面形变的观测研究1966年邢台地震的震源过程[J].地球物理学报,1975,18(3):164-182.
  • 5陈运泰 黄立人 林邦慧 等.用大地测量结果反演唐山7.8级地震位错模型[J].地球物理学报,1979,22(2):201-207.
  • 6孙付平.空间大地测量数据在地球动力学研究中的应用:博士后研究工作报告[M].武汉:武汉测绘科技大学,1998..
  • 7王椿镛 朱成男 等.用地形变资料测定通海地震的断层参数[J].地球物理学报,1978,21(3).
  • 8张祖胜 谢觉民 等.唐山7.8级地震的地壳形变[J].地球物理学报,1981,24(2).
  • 9张郢珍.唐山地震前地壳的异常隆起及无震蠕动[J].地震学报,1981,3(1).
  • 105,陈绍绪.牛东断裂的无震滑动.文安-霸县地壳隆起研究.北京:地震出版社,1986.

共引文献111

同被引文献11

  • 1Zinodiny S,Strawderman W E and Parsian A. Bayes minimax estimation of the multivariate normal mean vector for the case of common unknown variance[ J]. Journal of Multivariate A- nalysis,2011,102(9) : 1 256 - 1 262.
  • 2Arturo J and Fernrndez. WeibuU inference using trimmed samples and prior information[ J ]. Statistical Papers, 2009, 50(1) : 119 -136.
  • 3Vladimir Savchuk and Chris P Tsokos. Statistical reliabilityanalysis prior Bayes estimates [ A ]. Atlantis Studies in Proba- bility and Statistics, Bayesian Theory and Methods with Ap- plications[ C]. 2011, ( 1 ) : 247 -276.
  • 4Elio Chiodo and Davide Lauria. Probabilistic transient stabili- ty assessment and on-line Bayes estimation [ A ]. Springer Se- ries in Reliability Engineering, Innovations in Power Systems Reliability[ C]. 2011,259 -312.
  • 5Qin Zengchang and Jonathan Lawry. Hybrid Bayesian estima- tion trees based on label semantics [ A ]. Lecture Notes in Computer Science, Symbolic and Quantitative Approaches to Reasoning with Uncertainty [ C ]. 2005, ( 3571 ) : 896 - 907.
  • 6Ulf Stromberg. Empirical Bayes and semi-Bayes adjustments for a vast number of estimations [ J 1. European Journal of Epidemiology ,2009,24(12) :737 - 741.
  • 7Datta G S,et al. Bayesian benchmarking with applications to small area estimation [ J ]. TEST, 2011,20 ( 3 ) : 574 - 588.
  • 8Koch K P. Parameter estimation and hypothesis testing in linear models [ M ]. Springer, Berlin, 1999.
  • 9Weiping ZHANG Laisheng WEI Yu CHEN.THE SUPERIORITIES OF BAYES LINEAR UNBIASED ESTIMATION IN PARTITIONED LINEAR MODEL[J].Journal of Systems Science & Complexity,2011,24(5):945-954. 被引量:6
  • 10隋立芬,陶大欣.多种顾及先验信息的平差及其比较[J].测绘工程,2001,10(4):9-12. 被引量:10

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部