期刊文献+

基于混合微粒群算法的相位解缠

PHASE UNWRAPPING WITH HYBRID PARTICLE SWARM OPTIMIZATION ALGORITHM
下载PDF
导出
摘要 针对Goldste in枝切线及蚁群解缠方法存在的问题,提出一种基于混合微粒群算法的相位解缠方法。该算法首先对奇异点进行预处理,将其分为偶极点、边界点和内部点;然后,利用相干图对内部点分区,并采用混合微粒群算法生成各自区域内的最短路径;最后,将这些最短路径分割成电荷平衡的小段枝切线,并对边界点和剩余未连接的奇异点按照窗口扩展法生成枝切线。实验表明,该算法比传统枝切线解缠方法更加有效。 Aiming at the disadvantages of phase unwrapping methods for the Goldstein branch cutting and ant colony optimization,a new phase unwrapping algorithm with hybrid particle swarm optimization algorithm(H-PSO) is proposed.At first,the residues were divided into dipoles,border points and inner points by preprocessing,and then,the inner points were separated in several areas,where the shortest paths were generated by the H-PSO,finally,the shortest paths were segmented into some small branch cuts with the balance charges,and the border points and the disconnected residues were connected with window expanding method.The experimental results show that the algorithm proposed is much better than the classical phase unwrapping method of Goldstein branch cut.
出处 《大地测量与地球动力学》 CSCD 北大核心 2010年第6期77-81,共5页 Journal of Geodesy and Geodynamics
基金 矿山空间信息技术国家测绘局重点实验室(河南理工大学 河南省测绘局)开放基金(KLM200909) 江苏省普通高校研究生科研创新计划(CX08B_111Z) 高等学校博士学科点专项科研基金(20090095110002) 国家自然科学基金(41071273)
关键词 相位解缠 混合微粒群 枝切线 最短路径 相干图 phase unwrapping hybrid particle swarm optimization branch cut shortest path coherence map
  • 相关文献

参考文献9

二级参考文献34

  • 1VARELA G N, SINCLAIR M C. Ant colony optimization for virtual--wavelength --path routing and wavelength allocation[A]. Proceedings of the 1999 Congress on Evolutionary Computation [C]. Washington DC: IEEE, 1999. 1809--1816.
  • 2BAUER A, BULLNHEIMER B, HARTL R F, STRAUSSC. An ant colony optimization approach for the single machine total tardiness problem[A]. Proceedings of the 1999 Congresson Evolutionary Computation [C]. Washington DC: IEEE,1999. 1445-- 1450.
  • 3KRIEGER MICHAEL J B, et al. Ant--like task allocation and recruitment in cooperative robots[J]. Nature, 2000,406:39--42.
  • 4HOOGEVEEN J A, LENSTRA J K, VELTMAN B. Preemptive scheduling in a two--stage multiprocessor flow shop is NP--hard[J]. European Journal of Operational Research, 1996,89(1): 172--175.
  • 5DUDEK R A, et al. The lessons of flowshop scheduling research[J]. Operations Research, 1992, 40(1):7--13.
  • 6LINN R, ZHANG Wei, Hybrid flowshop seheduling:a survey[J]. Computers & Industrial Engineering, 1999,37(1-- 2) : 57--61.
  • 7CAMAZINE S, et al. Self--organization in biological systems[M]. Princeton USA: Princeton University Press, 2001.
  • 8BONABEAU E, DORIGO M, THERAULAZ G. Inspiration for optimization from social Insect behavior[J]. Nature, 2000,406:39--42.
  • 9DORIGO M, MANIEZZO V,COLORNI A. Ant system:optimization by a colony of cooperating agents[J]. IEEE Transactions On System Man and Cybernetics B:Cybernetics, 1996,26(1): 29--41.
  • 10DI CARO G, DORGO M. AntNet: distributed stigmergetic control for communications networks[J]. Journal of Artificial Intelligence Research, 1998, 9:317--365.

共引文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部