期刊文献+

分子动力学模拟中基于GPU的范德华非键作用计算 被引量:6

Van der Waals force calculation for molecular dynamic simulation implemented on GPU
原文传递
导出
摘要 GPU最初是专为图形渲染而设计的,近年来已经演化为高并行度、多线程、具有强大计算能力和极高存储器带宽的通用多核处理器,目前主流GPU的峰值计算能力通常可达CPU的数10倍。这提供了1种解决大计算量难题的新的可能。分子动力学模拟需要极强的计算能力,故使用GPU来进行分子动力学模拟的尝试是很自然的选择。本文基于NVIDIA的GeForce GTX295GPU和CUDA2.3开发环境实现了范德华力计算、范德华势能计算和基于网格的邻居搜索。在邻居搜索算法实现中,对于不同计算能力的GPU给出了不同的实现策略。对36万粒子规模的高分子聚乙烯体系算例的测试表明:1个时间步的计算结果与计算性能突出的分子动力学软件GROMACS相应的计算结果一致(运行在工作站Intel Xeon E 5405上),相对于CPU单核计算性能有大幅提高,其中邻居搜索加速了17倍,范德华力计算加速了47倍;并且解决了邻居搜索时的边界问题。虽然本文是针对范德华力的计算,但是策略是通用的,其他方向的研究人员也可以参考。测试结果表明,使用GPU来加速较大规模计算量的计算是可取的。 GPU(graphics processing units) originally designed for graphics rendering,lately has evolved into a highly parallel,multithreaded,many-core processor with tremendous computational horsepower and very high memory bandwidth.Mainstream GPUs far exceed CPUs in terms of raw computing power.It provides a new way to solve data-intensive problem.Molecular dynamics simulation is extremely computationally demanding,which makes them a natural candidate for implementation on GPU.We have implemented van der Waals force calculation and neighbor searching on GeForce GTX295 and CUDA toolkit 2.3 under Ubuntu Linux 9.04 Desktop Operating System.We have demonstrated two ways to implement neighbor searching and compared their performances.The test data of one time step calculation on GPU for 360000 particles which comprise 1200 equally PE chains conforms to the output of single threaded calculation by GROMACS 4.05 on one core of the Intel Xeon(R) 5405@2.0 GHZ CPU in the dell workstation,and speedup of 17 in neighbor searching and 47 in van der walls force computing were obtained.The strategies for implementation of non-bonded force computing on GPU described in this paper suggests that GPU accelerated calculation of large-scale molecular dynamics could be expected.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2010年第12期1607-1612,共6页 Computers and Applied Chemistry
基金 国家自然科学基金(21073195) 中国科学院过程工程研究所多相复杂系统国家重点实验室开放基金资助
关键词 分子动力学 GPU NVIDIA CUDA GROMACS 邻居搜索 范德华力 GPU Van der Waals force neighbor searching MD GROMACS CUDA
  • 相关文献

参考文献18

  • 1NVIDIA_CODA_ProgrammingGuide_3.0.http://deve|oper.nvidia.com/object/cuda_3_0_dowuloads.html.
  • 2David V D S,Erik L and Berk H.GROMACS USER MANUAL Version 4.0.
  • 3Eric D.GROMACS NVidia Folding@home.2002.
  • 4Joshua A A,Chris D L and Travesset A.General purpose molecular dynamics simulations fully implemented on graphics processing units.Journal of Computational Physics,2008,227(10):5342-5359.
  • 5Liu W G,Schmidt B and Voss G.Accelerating molecular dynamics simulations using Graphics Processing Units with CUDA.Computer Physics Communications,2008,179(9):634-641.
  • 6Rapaport D C.The Art of Molecular Dynamics Simulation.2rid Ed.America:Cambridge University Press,2004.
  • 7Van Meel J A,Arnold M A and Frenkel D.Harvesting graphics power for MD simulations.Molecular Simulation,2008,34(3):259-266.
  • 8OpenMM.https://simtk.org/home/openmm.
  • 9John E S,James C P and Peter L E Accelerating molecular modeling applications with graphics processors.Journal of Computational Chemistry,2007,28:2618-2640.
  • 10Mark S F,Peter E and Vishal V.Accelerating molecular simulation on graphics units.Journal of Computational Chemistry,2009,30:864-872.

同被引文献77

  • 1曹伟,宋雪梅,王波,严辉.碳纳米管的研究进展[J].材料导报,2007,21(F05):77-82. 被引量:67
  • 2Berendsen HJC, Vanderspoel D, Vandrunen R. GROMACS: A mes-sage-passing parallel molecular dynamics implementation [ J ]. COM-PUTER PHYSICS COMMUNICATIONS, 1995,91 (1 - 3) :43 -56.
  • 3Hess Berk,Kutzner Carsten,van der Spoel,et al. GROMACS 4: Algo-rithms for highly efficient, load-balanced, and scalable molecular simu-lation[ J]. JOURNAL OF CHEMICAL THEORY AND COMPUTA-TION,2008,4(3) :435 -447.
  • 4Pronk Sander, Pall Szilard, Schulz Roland, et al. GROMACS 4. 5 : ahigh-throughput and highly parallel open source molecular simulationtoolkit [ J ]. BIOINFORMATICS, 2013,29 (7) : 845 -854.
  • 5Alder B J,Wainwright T E. Phase Transition for a Hard Sphere System [ J]- The Journal of Chemical Physics, 1957,27(5) :1208-1209.
  • 6Landman U,Luedtke W D, Burnham N, et al. AtomisticMechanisms and Dynamics of Adhesion, Nanoindent- ation, and Fracture [J ]. Science, 1990, 248(4954) : 454-461.
  • 7Schitz J, Jacobsen K W. A Maximum in the Strength of Nanocrystalline Copper[ J ]. Science, 2003,301 ( 5638 ) : 1357-1359.
  • 8Proctor A J, Lipscomb T J, Zou Anqi, et al. Performance Analyses of a Parallel Verlet Neighbor List Algorithm for GPU-optimized MD Simulations [ C ]//Proceedings of International Conference on Biomedical Computing. Washington D. C. , USA : IEEE Press, 2012 : 14-19.
  • 9Anderson J A, Lorenz C D, Travesset A. General Purpose Molecular Dynamics Simulations Fully Implemented on Graphics Processing Units I J l. Journal of Computational Physics ,2008,227 ( 10 ) :5342-5359.
  • 10Verlet L. Computer Experiments on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules[ J]. Physical review, 1967,159( 1 ) :98-103.

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部