期刊文献+

不同流型下轴承腔中油气介质的流动特征参数 被引量:13

Characteristic Flow Parameters of Oil/Air Lubricants in Bearing Chamber Under Different Flow Patterns
原文传递
导出
摘要 航空发动机轴承腔两相介质流动状态的理解对于润滑和二次空气流动系统的设计是十分重要的。借助于流型分类进行两相介质流动研究,是揭示轴承腔中两相介质流动物理本质的可行途径。由于航空发动机轴承腔润滑状态的复杂性,难以从物理试验直观判断流型类别,通过流动特征参数的差异性判断流型类别是值得探索的方法。发动机轴承腔可能出现的流型有均相流动、分层流动和油膜/空气(含油滴颗粒相)流动。针对这3种流型类别,分析了润滑介质压力和速度相对于不同流型表现出的差异性及其分布特点,同时探讨了转子转速、供油量和密封进气量等工况条件对这种差异性的影响。研究工作表明:轴承腔中润滑介质的压力和速度可以作为判别两相介质流型的特征参数,并且这一判别技术具有较好的鲁棒性。 A sufficient comprehension about the oil/air two-phase flow in the bearing chamber of an aero-engine is important for the design of its lubrication and secondary air system.The oil/air two-phase flow conditions in the bearing chamber can be studied via flow pattern classification,which is a feasible way to reveal the physical nature of two-phase flows in bearing chambers.However,flow pattern classification is difficult to perform directly by experiments owing to the extremely complex flow conditions in the bearing chamber of an aero-engine.Therefore,it is worthwhile to determine the flow pattern according to the difference of characteristic flow parameters.The oil-gas two-phase flow pattern in bearing chamber of aero-engine may include homogeneous flow,stratified flow and film/gas(oil particle-phase)flow.This article gives a contribution to this subject.An analytical approach is adopted to study the diversities of lubricant pressure and velocity and their distributions under different flow patterns.Furthermore,the influences of rotational speeds,oil flows and sealing air flows on these differences are investigated.The work indicates that lubricant pressure and velocity in the bearing chamber can be regarded as robust characteristic parameters to determine the flow pattern.
出处 《航空学报》 EI CAS CSCD 北大核心 2010年第12期2400-2406,共7页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(50975233)
关键词 航空发动机 轴承腔 流型 油气两相 特征参数 aero-engine bearing chamber flow pattern oil/air two-phase characteristic parameter
  • 相关文献

参考文献11

  • 1Wittig S,Glahn A,Himmelsbach J.Influence of high rotational speeds on heat transfer and oil film thickness in aero-engine bearing chamber[J].Journal of Engineering for Gas and Turbines and Power,1994,116(2):395-401.
  • 2Glahn A,Wittig S.Two-phase air/oil flow in aero-engine bearing chambers assessment of an analytical prediction method the internal wall heat transfer[J].International Journal of Rotating Machinery,1999,5(3):155-165.
  • 3Busam S,Glahn A,Wittig S.Internal bearing chamber wall heat transfer as a function of operating conditions and chamber geometry[J].Journal of Engineering for Gas Turbines and Power,2000,122(2):314-320.
  • 4Gorse P,Busam S,Dullenkopt K.Influence of operating condition and geometry on the oil film thickness in aeroengine bearing chambers[J].Journal of Engineering for Gas Turbines and Power,2006,128(1):103-110.
  • 5Glahn A,Kurreck M,Willmann M,et al.Feasibility study on oil droplet flow investigations inside aero engine bearing chambers-PDPA techniques in combination with numerical approaches[J].Journal of Engineering for Gas Turbines and Power,1996,118(4):749-755.
  • 6Farrall M,Hibberd S,Giddings D.Prediction of air/oil exit flows in a commercial aero-engine bearing chamber[J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2006,220(3):197-202.
  • 7Farrall M,Hibberd S,Simmons K.The effect of initial injection conditions on the oil droplet motion in a simplified bearing chamber[J].Journal of Engineering for Gas Turbines and Power,2008,130(1):1-7.
  • 8Wu H T,Chen G D.The calculation of two-phase gas/liquid homogenous flow in bearing chambers[J].Advances in Materials Manufacturing Science and TechnologyⅡ,2006,532-533:717-720.
  • 9吴昊天,陈国定.轴承腔中润滑油气液两相分层流动研究[J].中国机械工程,2007,18(15):1800-1803. 被引量:8
  • 10吴昊天,陈国定.轴承腔油气两相泡状流动的数值研究[J].机械工程学报,2008,44(9):70-75. 被引量:23

二级参考文献13

  • 1Glahn A,Kurreck M,Willmann M,et al.Feasibility Study on Oil Film Flow Investigations inside Aero Engine Bearing Chambers-PDPA Techniques in Combination with Numerical Approaches[J].Transactions of the ASME,Journal of Engineering for Gas Turbines and Power,1996,118(10):749-755.
  • 2Busam S,Glahn A,Witting S.Internal Bearing Chamber Wall Heat Transfer as a Function of Operating Conditions and Geometry[J].Transactions of the ASME,Journal of Engineering for Gas Turbines and Power,2000,122(4):314-320.
  • 3Hirt C,Nichols B.Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries[J].Journal of Computation Physics,1981,39(1):201-225.
  • 4BUSAM S, GLAHN S, WITTING S. Internal bearing chamber wall heat transfer as a function of operating conditions and chamber geometry[J]. Transactions of the ASME, Journal of Engineering for Gas Turbines and Power, 2000, 122(4): 314-320.
  • 5LEE C, PALMA P, SIMMONS K, et al. Comparison of computational fluid dynamics and particle image data for the airflow in an aeroengine hearing chamber[J]. Transactions of the ASME, Journal of Engineering for Gas and Turbines Power, 2005, 127(10): 697-703.
  • 6GLAHN A, WITTING S. Two-phase air/oil flow in aero-engine bearing chambers-assessment of an analytical prediction method for the internal wall heat transfer[J]. International Journal of Rotating Machinery, 1999, 5(3): 155-165.
  • 7GLAHN A, WITTING S. Two-phase flow in aero engine bearing chambers: characterization of oil film flows[J]. Transactions of the ASME, Journal of Engineering for Gas and Turbines Power, 1996, 118(7): 578-583.
  • 8PRINCE J, BLANCH W. Bubble coalescence and break- up in air-sparged bubble columns[J]. AIChE Journal, 1990, 36(10): 1 485-1 499.
  • 9LUO H, SVENDSEN H. Theoretical model for drop and bubble break-up in turbulent dispersions[J]. AIChE. Journal, 1996, 42(5): 1 225-1 233.
  • 10WITTING S, GLAHN A, HIMMELSBACH J. Influence of high rotational speeds on heat transfer and oil film thickness in aero-engine bearing chambers[J]. Transactions of the ASME, Journal of Engineering for Gas Turbines and Power, 1994, 116(4): 395-401.

共引文献25

同被引文献145

引证文献13

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部