摘要
领域驱动数据挖掘(Domain-Driven Data Mining,DDDM)是数据挖掘中的新方法,目的是挖掘用户感兴趣、可行动的知识,与传统的数据挖掘过程CRISP-DM相比,DDDM是基于约束的、人机结合、往复循环、不断逼近目标、深层次的知识发现过程。本文在剖析DDDM挖掘过程难度自增殖的复杂性特点的基础上,提出基于旋进原则的系统方法进行挖掘,提出从领域知识、数据和技术三个方面进行旋进挖掘,以使得挖掘出来的知识更满足用户在现实世界活动中对知识的需求。最后,文中结合名老中医学术思想挖掘进行了实证研究,开发了基于语义的Apriori算法,并用抽象语义、分类语义和组合语义结构化表示领域知识,挖掘结果表明基于旋进原则的DDDM方法是可行和有优势的。
Due to the disadvantage of traditional data mining method,a new method for mining interesting and actionable knowledge,called Domain-Driven Data Mining(DDDM),was introduced.After analyzing the feature of self—increasing difficulty system of data mining process,we proposed a system method for Domain-Driven Data Mining based on SPIRPRO Principles,and analyzed from the following three aspects:domain knowledge,data and technique with the method of SPIRPRO Principles in order to meet user mining requirement.At last,a case related to Traditional Chinese Medicine(TCM) mining was introduced,a new priori-based on semantic was developed and proposed abstract semantic,classified semantic and compound semantic to formed domain knowledge.Result has shown that Domain-Driven Data Mining based on SPIRPRO principle is feasible and advantageous.
出处
《情报学报》
CSSCI
北大核心
2010年第6期1016-1022,共7页
Journal of the China Society for Scientific and Technical Information
基金
“十一五”国家科技攻关计划“名老中医学术思想临证经验现代分析挖掘方法研究”(2007BAI10B06)
国家自然科学基金(70871111)
关键词
旋进原则
领域驱动
数据挖掘
知识发现
SPIRPRO principles
domain-driven
data mining
knowledge discovery