期刊文献+

基于旋进原则的领域驱动数据挖掘方法研究 被引量:5

Research on Domain-Driven Data Mining Based on SPIRPRO Principles
下载PDF
导出
摘要 领域驱动数据挖掘(Domain-Driven Data Mining,DDDM)是数据挖掘中的新方法,目的是挖掘用户感兴趣、可行动的知识,与传统的数据挖掘过程CRISP-DM相比,DDDM是基于约束的、人机结合、往复循环、不断逼近目标、深层次的知识发现过程。本文在剖析DDDM挖掘过程难度自增殖的复杂性特点的基础上,提出基于旋进原则的系统方法进行挖掘,提出从领域知识、数据和技术三个方面进行旋进挖掘,以使得挖掘出来的知识更满足用户在现实世界活动中对知识的需求。最后,文中结合名老中医学术思想挖掘进行了实证研究,开发了基于语义的Apriori算法,并用抽象语义、分类语义和组合语义结构化表示领域知识,挖掘结果表明基于旋进原则的DDDM方法是可行和有优势的。 Due to the disadvantage of traditional data mining method,a new method for mining interesting and actionable knowledge,called Domain-Driven Data Mining(DDDM),was introduced.After analyzing the feature of self—increasing difficulty system of data mining process,we proposed a system method for Domain-Driven Data Mining based on SPIRPRO Principles,and analyzed from the following three aspects:domain knowledge,data and technique with the method of SPIRPRO Principles in order to meet user mining requirement.At last,a case related to Traditional Chinese Medicine(TCM) mining was introduced,a new priori-based on semantic was developed and proposed abstract semantic,classified semantic and compound semantic to formed domain knowledge.Result has shown that Domain-Driven Data Mining based on SPIRPRO principle is feasible and advantageous.
出处 《情报学报》 CSSCI 北大核心 2010年第6期1016-1022,共7页 Journal of the China Society for Scientific and Technical Information
基金 “十一五”国家科技攻关计划“名老中医学术思想临证经验现代分析挖掘方法研究”(2007BAI10B06) 国家自然科学基金(70871111)
关键词 旋进原则 领域驱动 数据挖掘 知识发现 SPIRPRO principles domain-driven data mining knowledge discovery
  • 相关文献

参考文献15

  • 1Frawley W,Piatetsky-Shapiro G,Matheus C.Knowledge Discovery in Databases:An Overview[J].AI Magazine,1992,13(3):213-228.
  • 2Adomavicius G,Tuzhilin A.Discovery of Actionable Patterns in Databases:The Action Hierarchy Approach[C] // Proceedings of the Third International Conference of Knowledge Discovery & Data Mining.The AAAI Press.1997.
  • 3He Z,Xu X,Deng S,Data mining for actionable knowledge:A survey[R].Harbin Institute of Technology China,2005.
  • 4Cao L B,Zhang C Q.Domain-Driven Actionable Knowledge Discovery in the Real World,PAKDD 2006,LNAI3918:821-830.
  • 5Graco W,Semenova T,Dubossarsky E.Toward Knowledge-Driven Data Mining,Toward Knowledge-Driven Data Mining[C] //2007 International Workshop on Domain Driven Data Mining,2007:49-54.
  • 6Jefferson T I,Nagy T J.A domain-driven approach to improving search effectiveness in traditional online catalogs[J].Information and Management,2002:559-570.
  • 7Cao L B,Lin L,Zhang C Q.Domain-driven in-depth pattern discovery:a practical methodology[C] // Proceeding of AusDM,2005:101-114.
  • 8Han J W,Laks V,Lakshmanan S,et al.Constraint-Based,Multidimensional Data Mining[J].Computer,1999,32(8):46-50.
  • 9陈文伟.挖掘变化知识的可拓数据挖掘研究[J].中国工程科学,2006,8(11):70-73. 被引量:19
  • 10Xi-jin TANG,Kun NIE,Yi-jun LIU.META-SYNTHESIS APPROACH TO EXPLORING CONSTRUCTING COMPREHENSIVE TRANSPORTATION SYSTEM IN CHINA[J].Journal of Systems Science and Systems Engineering,2005,14(4):476-494. 被引量:3

二级参考文献7

共引文献27

同被引文献69

引证文献5

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部