摘要
图G的团复形是一个抽象复形,它的单形是G的团,用C(G)表示。一个复形K称为无圈的如果Hq(K)=0(q>0),H0(K)J。Ivashchenko(1994)证明了如果G是可收缩的,则C(G)是无圈的。在组合拓扑讨论班上(1998)。谢力同教授提出上述命题的逆命题是否成立。本文我们证明当C(G)是一个锥形或C(G)的维数小于等于2时。
The clique complex of a graph G,denoted by C(G),is an abstract complex whose simplices are the cliques of G.A complex K is said to be acyclic,if Hq(K)=0(q>0) and H0(K)J.Ivashchenko (1994) proved that the clique complex of a graph G is acyclic if G is a contractible graph.In a class having discussion on Graphs and Algebraic Topology (1998),Prof. Xie Li-tong posed whether the inverse proposition holds or not of above proposition.In this paper we prove that the inverse proposition holds if C(G) is cone or the dimension of C(G) is no more than 2.
出处
《山东矿业学院学报》
CAS
1999年第2期103-104,107,共3页
Journal of Shandong University of Science and Technology(Natural Science)
基金
国家教委博士点基金
国家自然科学基金
关键词
图
同调群
收缩变换
收缩图
团复形
无圈性
clique
finite complex
homology group
contractible transformation
contractible graph