期刊文献+

复杂光照条件下的人脸识别方法 被引量:1

Face recognition under complex illumination environment
下载PDF
导出
摘要 在人脸识别增加真实性的研究中,为了提高在光照条件变化时人脸图像的识别率,并加快运行速度,提出了一种基于小波变换域的光照处理与识别方法。由于光照对低频信息的影响较小,且低频信息在人脸识别中起到最主要作用,通过对人脸的低频逼近图像进行光照处理,采用局部二元模式来表征光照处理后的低频图像,将得到的局部二元模式特征作为人脸的鉴别特征用于分类与识别。根据YaleB、Extended YaleB人脸库的实验结果表明,在复杂的光照条件下识别率高达96%,与传统方法相比,取得了更好的识别结果。 In order to increase the recognition rate under illumination variations,a processing of illumination and face recognition method based on wavelet transform domain is proposed.Because the illumination does not significantly affect the low-frequency information which plays an important role in face recognition,the processing of illumination is applied to the approximate images,and the Local Binary Pattern method is performed to characterize the approximate images after the processing of illuminition,and the Local Binary Pattern feature is used as the face description for classification and recognition.The experiment results on YaleB and Extended YaleB face database show that the proposed method can achieve high face recognition rate up to 96% under complex illuminations,and it is much better than the traditional method.
出处 《计算机仿真》 CSCD 北大核心 2010年第12期250-253,270,共5页 Computer Simulation
基金 广西科技厅资助项目(063006-5G-4) 广西科学基金项目(0731020 0991022)
关键词 人脸识别 光照变化 小波变换 局部二元模式 Face recognition illumination change Wavelet analysis Local Binary Pattern(LBP)
  • 相关文献

参考文献11

  • 1Haitao Wang,Stan Z Li,Yangsheng Wang.Face recognition under varying lighting conditions using self quotient image[C].In:Proc.AFGR 2004.
  • 2T Chen,W Yin,X Zhou,D Comaniciu,T Huang.Total variation models for variable lighting face recognition[C].IEEE TPAMI,2006,28(9):1519-1524.
  • 3R Ishiyama,S Sakamoto.Geodesic Illumination Basis:Compensating for illumination Variations in Any Pose for Face Recognition[C].Proceedings 16th International Conference on Pattern Recognition.2002,(4):297-301.
  • 4Jaepil Ko,Eunju Kim,Hyeran Byun.A Simple Illumination Normalization Algorithm for Face Recognition[C].PRICAI 2002,LNAI 2417.Berlin,Heidelberg,Germany:pringer-Verlag,2002.532-541.
  • 5B Li,Y H Liu.When eigenfaces are combined with wavelets[J].Knowledge-based Systems,2002,15:343-347.
  • 6C Nastar,N Ayache.Frequency-based non-rigid motion analysis[J].IEEE Trans.Pattern Anal.Mach.Intel.1996,18(11):1067-1079.
  • 7T Ojala,M Pietikainen,T Maenpa.Multiresol-ution gray-scale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987.
  • 8Timo Ahonen,Abdenour Hadid,Matti Pietikainen.Face Recognition with Local Binary Patterns[C].ECCV 2004,LNCS 3021,2004.469-481.
  • 9Li ZStan,eta1.3D+2D face recognition by fusion at both feature and decision levels[C].In:Proceedings of IEEE International Workshop on Analysis and Modeling of Faces and Gestures,Beijing,2005.44-54.
  • 10S Liao,S Li.Learning multi-scale block local binary patterns for face recognition[R].ICB 2007.

同被引文献11

  • 1G D Finlayson,E Trezzi. Shades of gray and colour constancy[C]. Proceeding of IS&T/SID 12th Color Imaging, 2004.
  • 2W Xiong, B Funt, L Shi. Automatic White ba - lancing via GreySurface Identification [ C]. In : Proceeding of IS&T/SID Color Ima-ging Conference(CIC) , 2007:5 -9.
  • 3A Gijsenij, Th Gevers. Color Constancy using Imaging Regions[C]. In:Pro. of IEEE International Conference on Image Process-ing(ICIP’07)San Antonio, Texas, 2007:501 -504.
  • 4Lu Rui,et al. Color Constancy usin - g Effective Regions[ J]. IE-ICE Trans. On Inf. &Sys. , 2008,91 (7) :2091 -209.
  • 5A Gijsenij, Th Gevers. Color Constancy by Local Averaging[ J].In : Pro. Of Computationa - 1 Color Imaging Workshop ( CCIW ’ 07〉,in conjunction with ICIAP Modena, 2007 : 171 - 174.
  • 6J V Weijer, T Gevers, A Gijsenij. Edge - Based Color Constancy[J ]. IEEE Trans, on Image Processing,2007,16 (9 ): 2207-2214.
  • 7V Cardei, B Funt, K Barnard. Estimating the Scene IlluminationChromaticity Using a Neural Network[ J]. Journal of the OpticalSociety of America A, 2002,19(12) : 2374 -2386.
  • 8W Xiong, B Funt. Estimating Illumination Chromaticity via Sup-port Vector Regression [ J ]. Journal of Imaging Science and Techn-ology, 2006,50(4) :341 -348.
  • 9V Cardei, B Funt. Committee - based Color Constancy [ C ]. InProc. of IS&T/SID Color Imaging Conference( CIC),1999 :311 -313.
  • 10A Gijsenij and T Gevers. Color constancy using natural image sta-tistics [C]. IEEE Computer Society Conference on Image Process-ing. 2007,3:501 -504.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部