期刊文献+

粒子群优化RBF神经网络的短时交通流量预测 被引量:15

Study on Short Time Traffic Flow Prediction Based on RBF Neural Network Optimized by PSO
下载PDF
导出
摘要 根据交通流量数据具有非周期性、非线性和随机性等特点,为了更准确地对交通流量进行预测,实现交通智能控制和规划是主要问题。交通流量预测中存在容易陷入局部极小值、收敛速度慢,泛化能力差等问题,影响了交通流量预测的实用性和准确性。提出基于粒子群(PSO)优化RBF神经网络的交通流量预测方法。利用PSO算法操作简单、容易实现等特点及其深刻的智能背景,对RBF神经网络的参数(中心和宽度)、连接权重进行优化,并用经PSO算法优化的RBF神经网络对短时交通流量进行仿真预测,仿真结果表明,PSO算法优化的RBF神经网络具有较高的预测精度,比RBF预测模型精度高、收敛快。PSO算法优化的RBF神经网络,适用于短时交通流量预测,预测精度较高,具有推广应用价值。 Traffic flow data are unperiodical,nonlinear and stochastic,the practicability and accuracy are affected by its drawbacks of falling into local optimization and low convergence rate.Thus,RBF neural network optimized by particle swarm optimization algorithm(PSO-RBFNN) is proposed to predict traffic flow in the paper.Being easy to realize,simple to operate with profound intelligence background,the parameters and connection weight are optimized by the algorithm and short time traffic flow prediction is simulated by the optimized RBF Neural Network.The predictiion results of the instance show that it has better prediction results,higher precision,faster convergence speed than that of RBf predicton model.The optimized RBF Neural Network is suitable for short time traffic flow prediction.The method has good prediction accuracy and popularization value.
出处 《计算机仿真》 CSCD 北大核心 2010年第12期323-326,共4页 Computer Simulation
关键词 交通流量 神经网络 粒子群算法 优化 Traffic flow Nerual network Particle swarm algorithm Optimization
  • 相关文献

参考文献8

二级参考文献30

  • 1裴玉龙,马骥.Screening and reconstruction of real-time traffic data[J].Journal of Harbin Institute of Technology(New Series),2003,10(1):1-6. 被引量:1
  • 2杨兆升.论智能运输系统[J].中国公路学报,1995,8(4):102-110. 被引量:19
  • 3覃明贵,崔中发,崔岩,尚宁,王亚琴,朱扬勇.iCentroView:城市交通监控与管理系统[J].计算机应用与软件,2006,23(2):28-29. 被引量:8
  • 4焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1995..
  • 5Ichiro Masaki,A brief History of ITS[R].USA:Massachusetts Institute of Technology,1999.
  • 6Voort M.,Dougtherty M.,Watson S.,Combining Kohonen maps with ARIMA time series models to forcast traffic flow.Transpotation Research C.1996,4(5),307 ~318.
  • 7EL-Faouzi N.E.,Nonparametric Traffic flow prediction using kernel estimator.Transportation and traffic theory.Proceedings of the 13th International Symposium on Transportation and Traffic Theory,Lyon,France,24 ~ 26 July 1996.Elseiver,Amsterdam,pp.41 ~ 54.
  • 8Dougherty M.,Cobbett M.,Short-term inter-urban traffic forecasts using neural networks.International Journal of Forecasting,13,21 ~ 31.1997.
  • 9Brian L.Smith,Michael J.Demetsky.Traffic Flow Forecasting:Comparition of Modeling Approachies.Journal of Transportation Engineering.July/August,1997,261 ~ 266.
  • 10Martin T.Hagan,Howard B.Demuth,Mark H.Beale.,Neural Network Design.PWS Publishing Company.

共引文献342

同被引文献96

引证文献15

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部