期刊文献+

绕平头回转体的空化流场研究 被引量:1

Study on the Cavitating Flow around the Blunt Axisymmetric Body
下载PDF
导出
摘要 采用实验与数值模拟相结合的方法对绕平头回转体的空化流场进行了研究。数值模拟中,为了精确捕捉由于分离流动而产生的漩涡结构和空泡团的脱落现象,湍流模型采用了一种基于空间尺度修正的滤波器模型(FBM)。实验中,采用高速录像技术观察了在不同空化数下,绕回转体的空泡形态,并应用二维和三维粒子测速系统(DPIV)测量了相应工况下,空化流场的速度及涡量分布。研究结果表明:对于平头回转体,其肩部的高剪切流动区出现了不规则的漩涡分离结构,初生空泡首先在该分离区域内产生。随着空化数的降低,空化区域会有明显的增大,空泡呈椭球状,不规则的小尺度空泡团的脉动转变为周期型的大尺度空泡团的脱落现象。在不同的发展周期内,绕平头回转体的空化存在强烈的三维流动特性,回转体尾部的高压区域造成了反向射流的产生,反向射流以逆时针的螺旋状逐渐向回转体头部推进,致使空泡周向上的断裂,以及空泡脱落的起始位置有较大的区别。流场中的低速区域对应于空化核心区,其值远小于主流速度。高涡量主要亦集中在该区域内,空化区域内部汽液频繁的水汽交换是造成高涡量区域的主要原因。 The structures of unsteady cavitating flows around a blunt axisymmetric body were investigated by the experimental and numerical methods.In order to accurately capture the vortex separation and cloud shedding,a filter-based k-εturbulence model was applied in numerical simulations.In experiment,the high-speed video camera was used to visualize the unsteady flow structure,and 2D and 3D particle image velocimetry(PIV)were used to measure flow field,including the velocity and vorticity fields.The experimental and numerical results show that the high shear vortex structures locate in the shoulder area of the blunt object,and the inception cavity appears in the boundary layer separation zone near the wall,but not the adherent area.With the decrease of cavitation number,cavitation region will significantly increase,and the profile of the cavity is ellipsoidal shape.Irregular pulse of small-scale bubble group changes into larger-scale cloud shedding.As in the experiment,the modeled reentrant flow has been observed to follow a helical pattern.This helical flow revolves around the circumference of the cylinder.The flow enables from the high pressure region downstream of the cavity.The high pressure region is situated at the aft end of the azimuthal section of the cavity of greatest axial extent.During its initial formation,due perhaps to turbulence fluctuations,the reentrant flow was initially driven and then moved permanently in a helical path.The velocity of this region is lower that of the main flow area,but the vorticity is larger than other regions,indicating that obvious vortex structures exist in the part,due to the frequently mass and momentum transformation.
出处 《科学技术与工程》 2010年第35期8729-8735,共7页 Science Technology and Engineering
基金 国家自然科学基金项目(50979004)资助
关键词 空化 平头回转体 粒子测速系统 cavitation axisymmetric blunt body particle image velocimetry
  • 相关文献

参考文献11

  • 1Rouse H,McNown J S.Cavitation and pressure distribution,head forms at zero angel of yaw,studies in engineering.Bulletin 32,State University of Iowa,1948.
  • 2May A.Water entry and the cavity-running behavior of missiles.Naval Sea Systems Command Hydroballistics Adcisory Committee TR-75-2.
  • 3刘桦,朱世权,何友声,胡天群,郭永崧.系列头体的空泡试验研究──初生空泡与发展空泡形态[J].中国造船,1995,36(1):1-10. 被引量:24
  • 4Kunz R,Boger D,Stinebring D,et al.A preconditioned implicit method for two-phase flows with application to cavitation prediction.Comput Fluids,2000;29(8):849-875.
  • 5Singhal A K,Athavale M M.Mathematical basis and validation of the full cavitation model.Journal of Fluids Engineering,2002; 124:617-624.
  • 6Kubota A,Kato H,Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling techniques.Journal of Fluids Engineering,1989; 111(3):204-210.
  • 7Wu J,Wang G Y,Shyy W.Time-dependent turbulent cavitating flow computations with interfacial transport and filter based models.International Journal for Numerical Methods for Fluids,2005; 49:739-761.
  • 8Coutier-Delgosha O,Reboud J L,Delannoy Y.Numerical simulation of the unsteady behavior of cavitating flows,Int J Numer Mesh Fluids,2003;42:5:27-548.
  • 9张博,王国玉,黄彪,余峰,张敏弟.绕水翼空化非定常动力特性的时频分析[J].实验流体力学,2009,23(3):44-49. 被引量:15
  • 10Wu J,Wang G Y,Shyy W.Time-dependent turbulent cavitating flow computations with interfacial transport and filter based models.International Journal for Numerical Methods for Fluids.2005; 49:739-761.

二级参考文献12

  • 1刘巨斌,肖昌润,郑学龄.轴对称物体空泡流动的数值计算[J].海军工程大学学报,2004,16(4):4-7. 被引量:6
  • 2傅慧萍,鲁传敬,吴磊.回转体空泡流特性研究[J].水动力学研究与进展(A辑),2005,20(1):84-89. 被引量:28
  • 3WANG Guoyu, SENOCAK I, SHYY W, et al. Dynamics of attached turbulent cavitating flows[J]. Progress in Aerospace Sciences,2001,37:551 - 581.
  • 4KAWANAMI Y, KATO H, Mechanism and control of cloud cavitation[ J]. Journal of Fluids Engineering, 1997,119 ( 8 ) : 788- 794.
  • 5CALLENAERE M, FRANC J P, MICHEL J M. The cavitation instability induced by the development of a re-entrant jet[J]. J. Fluid Mech. ,2001,444:223- 256.
  • 6TSUJIMOTO Y, YOSHIDA Y, MAEKAWA Y, et al. Observations of oscillating cavitation of an inducer[J] .Journal of Fluids Engineering, 1997,119 : 775 -781.
  • 7KJELDSEN M, ARNDT R E A, EFFERTZ M. Spectral characteristics of sheet/cloud cavitation [ J ]. Journal of Fluids Engineering,2000,122(3) : 481 - 487.
  • 8FUJII A, KAWAKAMI D T, TSUJIMOTO Y. Effect of hydrofoil shapes on partial and transitional cavity oscillations[J] .Journal of Fluids Engineering,2007,129 : 669 -672.
  • 9KAWAKAMI D T, FUJII A, TSUJIMOTO Y. An assessment of the influence of environmental factors on cavitation instabilities [ J ] . Journal of Fluids Engineering, 2008, 130 : 1 - 7.
  • 10NG K W. Diagnostic of cavitation in pumps and valves using the wigner distribution[C]//FED Cavitation and Multiphase Flow Forum, ASME, 1991 : 109 - 110.

共引文献32

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部