期刊文献+

遗传蚁群算法在编组站进路优化中的应用 被引量:1

Appliance of Genetic and Ant Colony Algorithm on Routing Optimization for Marshalling Yards
下载PDF
导出
摘要 进路优化是企业编组站调度的一个重要环节。合理进行进路选择,有利于减少货车在站停留时间,提高作业效率。本文针对企业编组站的作业和站场分布特点,建立了该问题数学模型,提出了一种融合了遗传算法和蚁群算法特点的遗传蚁群算法(GACA)来解决这种大规模组合优化问题,采用遗传算法生成信息素分布,利用蚁群算法求精确解,优势互补。结合实例计算说明了该融合算法是有效可行的。 Routing Optimization plays an important part in scheduling operation in marshalling yards of enterprises.The detention time of wagons can be reduced by selecting reasonable routes,consequently,it can make the operation more efficient.Aiming at the characteristic of operation and distribution in the marshalling yards,this paper have established a mathematical model for this issue,and a combination of genetic algorithm and ant colony algorithm which is called GACA is presented to resolve the large-scale combinatorial optimization problem.It adopts the genetic algorithm to generate pheromone to distribute,and then makes use of the ant colony algorithm to find accurate solutions,so the advantages of those two algorithms are integrated.The example shows that the integrated algorithm is feasible and effective.
出处 《微计算机信息》 2010年第34期243-244,220,共3页 Control & Automation
关键词 编组站调度 进路优化 遗传蚁群算法 Marshalling Yards Scheduling Routing Optimization Genetic and Ant Colony Algorithm
  • 相关文献

参考文献3

二级参考文献19

  • 1刘素华,韩萍.基于遗传算法的模糊模式识别及其应用[J].计算机工程与设计,2005,26(4):932-934. 被引量:9
  • 2崔玉宝,贾振华,侯志国,薛桂香.网格任务调度算法研究[J].微计算机信息,2006(05X):109-111. 被引量:6
  • 3A W Mu'alem,D G Feitelson.Utilization,Predictability,Workloads, and User Runtime Estimates in Scheduling the IBM SP2 with Backfilling [J].IEEE Trans on Parallel and Distributed System, 2001,12(6):529 -543.
  • 4唐立山等.非数值并行算法(第一册)-模拟退火算法[M].北京:科学出版社,2000.
  • 5Z.米凯利维茨.演化程序-遗传算法和数据编码的结合[M].周家驹,何险峰,译.北京:科学出版社,2000.
  • 6Holland J.Adaptation in natural and artificial systems[M].Ann Arbor:The University of Michigan Press,1975.
  • 7Tomioka S,Nisiyama S,Enoto T.Nonlinear least square regression by adaptive domain method with multiple genetic algorithms[J].IEEE Transactions on Evolution Computation,2007,11(1).
  • 8Kozek T,Roska T,Chua L O.Genetic algorithms for CNN template leaning[J].IEEE CAS,1993,40(60):580-591.
  • 9Falcao D M.Genetic algorithms applications in electrical distribution systems[C]//Proceeding of the 2002 Congress on Evolutionary Computation 2002,CEC'022,12-17 May 2002,2:1063-1068.
  • 10Zhuo Xiao-lan,Lin Ying,Zhang Jun.Comparison of selection strategy in genetic algorithm[C]//Proceedings of the 12th Chinese Automation & Computing Society Conference in the UK,Loughborough,England,16 September 2006.

共引文献30

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部