期刊文献+

基于SIFT特征的匹配算法改进 被引量:2

Improved Image Matching Based on SIFT Algorithm
下载PDF
导出
摘要 针对SIFT(Scale-invariant featrue transform)多量性特征,可能会产生很多不必要的关键点,因此在本文中结合背景减法算法,对重点物体进行提取,更好的体现局部特征的优势。并且引入K-L变换,在不影响质量的情况下对特征向量进行降维处理,以提高运行效率。 The abundant characteristics of the SIFT(Scale-invariant featrue transform) may lead to many unnecessary keypoints.The background subtraction algorithm is presented to solve the problems.It extract the key objects,which better reflect the advantage of local property.At the same time,we introduce K-L transform,in the situation of without affecting the quality to carry on the reduced-dimension processing,to raises operating efficiency.
出处 《微计算机信息》 2010年第35期236-238,共3页 Control & Automation
关键词 SIFT 局部特征 背景减法 K-L变换 SIFT Local property The Background Subtraction Algorithm
  • 相关文献

参考文献8

  • 1LOWE D G.Distinctive image features from scale-invariant key points[C]. International Journal of Computer Vision,2004,60(2):91- 110.
  • 2LOWE D G.Objeet recognition from local scale-invariant features [C]. International Conference on Computer Vision.Corfu, Greece,1999:1150-1157.
  • 3Lindeberg, Tony, "Scale-space theory: A basic tool for analysing structures at different scales", Journal of Applied Statistics, 21, 2 (1994), pp. 224 - 270.
  • 4成喜春,全燕鸣.基于HSI模型的彩色图像背景减法[J].计算机应用,2009,29(B06):231-232. 被引量:18
  • 5杨亮,郭新宇,赵春江,乔晓军.一种基于SIFT描述子的特征匹配新算法[J].微计算机信息,2009,25(28):135-137. 被引量:4
  • 6吴锐航.基于SIFT特征的图像检索技术研究,厦门大学硕士学位论文.
  • 7汪洋.图像匹配方法综述,江苏南通中等职业学校学校探讨论文.
  • 8陈智.图像匹配技术研究,华中师范大学硕士学位论文.

二级参考文献12

  • 1吴则举,陈俊东,刘云,Roemer Louis.静止背景的视频对象分割[J].青岛科技大学学报(自然科学版),2004,25(5):457-460. 被引量:6
  • 2陈君,戚飞虎.一种新的基于特征点的立体匹配算法[J].中国图象图形学报,2005,10(11):1411-1414. 被引量:7
  • 3徐金亭,刘伟军,孙玉文.基于曲率特征的自由曲面匹配算法[J].计算机辅助设计与图形学学报,2007,19(2):193-197. 被引量:20
  • 4Scharstein D, Szeliski R.A taxonomy and evaluation of dense two frame stereo correspondence algorithms [J].Int J Compute Visio n ,2002,47 (3) :7 -42.
  • 5Stefano L D,Marchioni Met al. A fast area-based stereo mathcing algorithm[J].Image and vision computing,2004,22(2):983-1005.
  • 6Zhang Zhengyou, Deriche R et al. A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry[J]. Artificial Intelligence, 1995,13(3):87-119.
  • 7Frohlinghaus T,Buhmann J M.Regularizing phase-based stereo [C].International conference on Pattern Recognitional,1996,451-455.
  • 8Crespi B,Cozzi A G. Analog computation for phase-based disparity estimation:continuous and discrete models[J].Machine Vision and Applications,1998,16(11):80-95.
  • 9Lowe D G.Distinctive Image Features from Scale invariant Keypoint[J].International Journal of Computer Vision,2004,62(2):91-110.
  • 10C G Harris, M Stephens.A combined corner and edge detector[C]. In: Proceedings of the 4th Alvey Vision Conference, Manchester,1988.

共引文献20

同被引文献13

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部