期刊文献+

关于E_ω-投射模和E_ω-内射模(英文)

On E_ω-projective Modules and E_ω-injective Modules
下载PDF
导出
摘要 左R-模M称为Eω-内射模,如果对环R中任意的ω阶Euclid理想I来说,任何R-模同态能够拓展为R-模同态。左R-模M称为Eω-投射模,若对环R中任意的ω阶Euclid理想I和任何R-模同态f∈HomR(M,R/I),存在R-模同态g∈HomR(M,R)使得f=πg,其中π是自然同态。本文证明P和Q均是Eω-投射模当且仅当PQ是Eω-投射模。进而,又证明了每一个左R-模是Eω-投射的当且仅当每一个左R-模是Eω-内射。 A left R-module M is called Eω-injective if for any ω-stage Euclidean ideal I of R,any R-module homomorphism may be extended to an R-module homomorphism.A left R-module M is called Eω-projective if for any ω-stage Euclidean ideal I of R and any R-module homomorphism f∈HomR(M,R/I),there exists an R-module homomorphism g∈HomR(M,R)such that f=πg where π is the canonical epimorphism.We prove,in the article,that both P and Q are Eω-projective if and only if so is PQ.Further,we show that every left R-module is Eω-projective if and only if every left R-module is Eω-injective.
作者 吴忠林
出处 《数学理论与应用》 2010年第4期6-9,共4页 Mathematical Theory and Applications
关键词 ω阶Euclid理想 Eω-内射 Eω-投射 短正合列 ω-stage Euclidean ideal Eω-injective Eω-projective Short exact sequence
  • 相关文献

参考文献5

  • 1Cooke G. A weakening of the Euclidean property for integral domains and applications to algebraic number theory [ J ]. J. Reine Angew Math, 1976,282,133 - 156.
  • 2Wu Zhonglin. Some properties on to - stage Euclidean ideals [ J ]. Journal of Hangzhou Normal University( Natural Science), 2010, 9(4) ,268 -273.
  • 3Nicholson W. K. , Yousif M.F. Mininjective rings[J]. J. Algebra, 1997, 187,548 -578.
  • 4Thomas W. Hungerford. Algebra, New York, Springer- verlag, 1974.
  • 5Liu J.C. Euclidean rings and their generalization [ D ]. M. S. Thesis, College Of Science, Zhejiang Normal University, 2006.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部