摘要
本文致力于研究非线性中立型延迟积分微分方程隐式Euler方法的收缩性。本文中的Lipschitz数是关于变量t的函数,而不是常数,最终能得到其数值解的结果是收缩的。
This paper is concerned with the contractivity of implict Euler methods for the nonlinear systems of neutral delay integral differential equations(NDIDES).The Lipschitz number of this article is a function of t on the variable,not constant.For nonlinear neutral delay differential equation,the final result can be contract.
出处
《数学理论与应用》
2010年第4期33-37,共5页
Mathematical Theory and Applications
关键词
收缩性
隐式Euler方法
中立型泛函微分方程
中立型延迟积分微分方程
Contractivity Implict Euler methods Neutral functional differential equations Neutral delay integral differential equations