期刊文献+

求一类矩阵方程组的最小二乘行对称解及其最佳逼近的迭代法 被引量:1

An Iterative Method for the Least Squares Row Symmetric Solution of a Class of the Matrix Equations and Its Optimal Approximation
下载PDF
导出
摘要 本文构造了求矩阵方程组AX=B,XC=D的最小二乘行对称解及其最佳逼近的迭代法,研究了迭代序列的性质,证明了算法的收敛性。 In this paper,an algorithm is constructed to solve the least squares row symmetric solution of the matrix equations AX=B,XC=D and its optimal approximation.Some properties of the iterative sequence have been derived,and the method has been shown to preserve convergence properties.
作者 胡荣 张磊
机构地区 湖南大学
出处 《数学理论与应用》 2010年第4期118-121,共4页 Mathematical Theory and Applications
基金 国家自然科学基金资助项目(No.10571047)资助
关键词 迭代法 梯度矩阵 行对称解 Algorithm Gradient matrix Row symmetric solution
  • 相关文献

参考文献4

  • 1Mitra S K. The matrix equations AX = B, XB = D [J]. Linear Algebra Appl. , 1984, 59,171 -181.
  • 2Li F. L. , Hu X. Y. and Zhang L. The generalized reflexive solution for a class of matrix equations ( AX= B, XC = D) [ J ]. Acta Mathematica Scientia, 2008, 28B ( 1 ), 185 - 193.
  • 3Li F. L. , Hu X. Y. and Zhang L. Least - squares mirrosymmetric solution for matrix equations ( AX = B, XC = D ) [ J ]. Numerical Mathematics A Journal of Chinese Universities ( English series ), 2006,15 ( 3 ), 217 - 226.
  • 4彭卓华,胡锡炎,张磊.求矩阵方程组A_1XB_1=C_1,A_2XB_2=C_2最小二乘对称解及其最佳逼近的迭代法[J].湘潭大学自然科学学报,2007,29(2):13-19. 被引量:3

二级参考文献11

  • 1Navarra A,Odell P L,Young D M.A represontation of the general common solution to the matrix equations A1 XB1 = C1,A2XB2 = C2 with applications[J].Commputers and Mathematics Appl,2001,41:929-935.
  • 2Mitra S K.Common solutions to a pair of linear matrix equations A1 XB1 = C1,A2 XB2 = C2[J].Proc Cambridge Philos Soc,1973,74:213 -216.
  • 3Mitra S K,A pair of simultaneous linear matrix equatons and a matrix programming problem[J].Linear Algebra Appl,1990,131:97-123.
  • 4Shinozaki N,Sibuya M.Consistency of a pair of matrix equations with an application[J].Kieo Engrg Rep,1974,27:141-146.
  • 5Vonder Woude J.Feedback decoupling and stabilization for linear systems with an multiple exogenous variable[D].Technical Univ.of Eindhoven,Netherlands,1987.
  • 6Ozgüler A B,Akar N.A common solution to a pair of matrix equations over a principal ideal domain[J].Linear Algebra Appl,1991,144:85-199.
  • 7Jiang Z,Lu Q.Optimal application of a matrix under spectral restriction[J].Math Numer Sinica,1988,1:47-52.
  • 8Peng Z Y,Hu X Y,Zhang L.The inverse problem of bisymmetric matrices[J].Numerical Linear Algebra with Applications,2004,1:59-73.
  • 9Meng T.Experimental Design and Decision Support,in Expert Systems[C]//The Technology of Knowledge Management and Decision Making for the 21st Century,Leondes:Academic Press.2001.
  • 10Peng Y X,Hu X Y,Zhang L.An iteration method for the symmetric solutions and the optimal appromation solution of the matrix equation AXB =C[J].Applied Mathematics and Computation,2005,160(3):763-777.

共引文献2

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部