期刊文献+

单体摩尔比对PbSe纳米粒子生长的影响 被引量:1

Influence of Monomer Molar Ratio on the Growth of PbSe Nanoparticles
下载PDF
导出
摘要 研究了不同温度下,硒单体与铅单体的不同摩尔比对PbSe纳米粒子晶体成核和晶体生长的影响.实验结果表明,当硒与铅的摩尔比较大时,PbSe纳米粒子在晶体成核阶段成核比较容易,但在晶体生长阶段的生长比较缓慢.一方面原因在于硒单体的活度较大,当单体摩尔比较大时,溶液超饱和度增大,晶体成核相对容易,同时会消耗过多的单体.当PbSe纳米粒子进入晶体生长阶段时,硒与铅的单体浓度减小,影响到PbSe纳米粒子的生长速度.另一方面原因在于PbSe纳米粒子的外壳是铅壳的纳米晶结构. In order to study the influence of selenium to lead monomer molar ratio on the growth of PbSe nanoparticles,PbSe nanoparticles with different molar ratio of selenium to lead monomer were synthesized.Experimental results indicate that the more selenium monomers' existed in the initial stage,the faster the nucleation process occurred,but slow the growth of nanoparticles.One reason is that selenium monomer is more active than the lead monomer.The more selenium monomers exist in the initial stage,the degree of supersaturation is higher,and therefore the faster nucleation process occurred.As a result,the remaining monomer concentration in the solution decreases significantly right after the nucleation stage,the degree of supersaturation is lower at the time,which results that growth of PbSe nanoparticles slows.The other reason is the special PbSe nanoparticle crystal structure.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2010年第12期2453-2457,共5页 Chemical Journal of Chinese Universities
基金 国家“九七三”计划项目(批准号:2005CB724400,2007CB808000) 国家自然科学基金(批准号:20773043,10979001)资助
关键词 PbSe纳米粒子 生长速度 单体摩尔比 PbSe nanoparticale Reaction speed Monomer molar ratio
  • 相关文献

参考文献24

  • 1Schaller R.D.,Petruska M.A.,Klimov V.I..J.Phys.Chem.B[J],2003,107:13765-13768.
  • 2SHAN Gui-Ye(单桂晔).LI Tie-Jin(李铁津),BAI Yu-Bai(白玉白),YANG Wen-Sheng(杨文胜),KONG Gui-Xiang(孔贵祥),WANG Ting-Ting(王婷婷),AN Li-Min(安利民),L(U) Qiang(吕强),SUN Jia-Zhong(孙家锺)[J].高等学校化学学报,2004,25(6):1108-1110.
  • 3LIU Yan-Shan(刘艳山).WANG Li(王藜),CAO Yong(曹镛)[J].高等学校化学学报,2007,28(3):596-599.
  • 4Ning J.J.,Men K.K.,Xiao G.J.,Zhao L.Y.,Wang L.,Liu B.B.,Zou B..J.Colloid Interface Sci.[J],2010,347:172-176.
  • 5Ning J.J.,Dai Q.Q.,Jiang T.,Men K.K.,Liu D.H.,Xiao N.R.,Li C.Y.,Li D.M.,Liu B.B.,Zou B.,Zou G.T.,Yu W.W..Langmuir[J],2009,25:1818-1821.
  • 6Dai Q.Q.,Xiao N.R.,Ning J.J.,Li C.Y.,Li D.M.,Zou B.,Yu W.W.,Kan S.H.,Chen H.Y.,Liu B.B.,Zou G.T..J.Phys.Chem.B[J],2008,112:7567-7571.
  • 7Dai Q.Q.,Li D.M.,Chang J.J.,Song Y.L.,Kan S.H.,Chen H.Y.,Zou B.,Xu W.Q.,Xu S.P.,Liu B.B.,Zou G.T..Nanotechnology[J],2007,18:405603-1-405603-7.
  • 8Pietryga J.M.,Schaller R.D.,Werder D.,Stewart M.H.,Klimov V.I.,Hollingsworth J.A..J.Am.Chem.Soc.[J],2004,126:11752-11753.
  • 9Hanrath T.,Veldman D.,Choi J.J.,Christova C.G.,Wienk M.M.,Janssen R.A.J..ACS Appl.Mater.Interfaces[J],2009,1:244-250.
  • 10Burda C.,Chen X.,Narayanan R.,El-Sayed M.A..Chem.Rev.[J],2005,105:1025-11021.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部