Uniqueness of the Weak Extremal Solution to Biharmonic Equation with Logarithmically Convex Nonlinearities
Uniqueness of the Weak Extremal Solution to Biharmonic Equation with Logarithmically Convex Nonlinearities
摘要
In this note, we investigate the existence of the minimal solution and the uniqueness of the weak extremal (probably singular) solution to the biharmonic equation △2ω=λg(ω)with Dirichlet boundary condition in the unit ball in Rn, where the source term is logarithmically convex. An example is also given to illustrate that the logarithmical convexity is not a necessary condition to ensure the uniqueness of the extremal solution.
参考文献18
-
1Agmon S, Douglis A, Nirenberg L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Comm Pure Appl Math, 1959, 12: 623-727.
-
2Arioli G, Gazzola F, Grunau HC, Mitidieri E. A semilinear fourth order elliptic problem with exponential nonlinearity. SIAM J Math Anal, 2005, 36(4): 1226-1258.
-
3Berchio E, Gazzola F. Some remarks on biharmonic elliptic problems with positive, increasing and convex nonlinearities. Electronic J DiffEq, 2005, 2005(34): 1-20.
-
4Boggio T. Sull'equilibrio delle piastre elastiche incastrate. Rend Acc Lincei, 1901, 10: 197-205.
-
5Brezis H, Cazenave T, Martel Y, Ramiandrisoa A. Blow up for ut- △u = g(u) revisited. Adv DiffEq, 1996, 1: 73-90.
-
6Brezis H, Vazquez J L. Blow-up solutions of some nonlinear elliptic problems. Rev Mat Univ Complut Madrid, 1997, 10: 443-468.
-
7Chandrasekhar S. An introduction to the study of stellar structure. New York: Dover,1967.
-
8Crandall M C, Rabinowitz P H. Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems. Arch Ration Mech Anal, 1975, 58: 207- 218.
-
9Davila J, Dupaigne L, Guerra I, Montenegro M. Stable solutions for the bilaplacian with exponential nonlinearity. SIAM J Math Anal, 2007, 39(2): 565-592.
-
10Ferrero A, Grunau HC. The Dirichlet problem for supercritical biharmonic equations with power-type nonlinearity. J Differential Equations, 2007, 234: 582-606.
-
1XieChaodong,YaoYangxin,YangJun.EXISTENCE OF POSITIVE SOLUTION FOR A BIHARMONIC EQUATION[J].Annals of Differential Equations,2005,21(1):59-64.
-
2赵勇,彭再云,张石生.向量优化问题有效点集的稳定性[J].应用数学和力学,2013,34(6):643-650. 被引量:7
-
3M. Wang(Department of Mathematics, Beijing University, Beijing, China).L~∞ CONVERGENCE OF TRUNC ELEMENT FOR THE BIHARMONIC EQUATION[J].Journal of Computational Mathematics,1997,15(1):14-22.
-
4AOUAOUI Sami.A Multiplicity Result for Some Integro-Differential Biharmonic Equation in R^4[J].Journal of Partial Differential Equations,2016,29(2):102-115.
-
5A.S.BERDYSHEV,A.CABADA,B.Kh.TURMETOV.ON SOLVABILITY OF A BOUNDARY VALUE PROBLEM FOR A NONHOMOGENEOUS BIHARMONIC EQUATION WITH A BOUNDARY OPERATOR OF A FRACTIONAL ORDER[J].Acta Mathematica Scientia,2014,34(6):1695-1706. 被引量:2
-
6WANG You-jun,SHEN Yao-tian.Multiplicity of Solutions for Nonlinear Biharmonic Equation Involving Critical Parameter and Critical Exponent[J].Chinese Quarterly Journal of Mathematics,2011,26(3):317-324. 被引量:2
-
7Wang Ming (Department of Mathematics, Peking University, Beijing, China).L~∞ CONVERGENCE OF QUASI-CONFORMING FINITE ELEMENTS FOR THE BIHARMONIC EQUATION[J].Journal of Computational Mathematics,1995,13(2):108-122. 被引量:2
-
8林甲富,林群.Bogner-Fox-Schmit元的超收敛[J].计算数学,2004,26(1):47-50. 被引量:4
-
9Dong-sheng Wu (Institute of Systems Science, Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100080, China ).CONVERGENCE AND SUPERCONVERGENCE OF HERMITE BICUBIC ELEMENT FOR EIGENVALUE PROBLEM OF THE BIHARMONIC EQUATION[J].Journal of Computational Mathematics,2001,19(2):139-142.
-
10Ming Wang,Weimeng Zhang.LOCAL A PRIORI AND A POSTERIORI ERROR ESTIMATE OF TQC9 ELEMENT FOR THE BIHARMONIC EQUATION[J].Journal of Computational Mathematics,2008,26(2):196-208.