期刊文献+

Uniqueness of the Weak Extremal Solution to Biharmonic Equation with Logarithmically Convex Nonlinearities

Uniqueness of the Weak Extremal Solution to Biharmonic Equation with Logarithmically Convex Nonlinearities
原文传递
导出
摘要 In this note, we investigate the existence of the minimal solution and the uniqueness of the weak extremal (probably singular) solution to the biharmonic equation △2ω=λg(ω)with Dirichlet boundary condition in the unit ball in Rn, where the source term is logarithmically convex. An example is also given to illustrate that the logarithmical convexity is not a necessary condition to ensure the uniqueness of the extremal solution.
作者 LUO Xue
出处 《Journal of Partial Differential Equations》 2010年第4期315-329,共15页 偏微分方程(英文版)
  • 相关文献

参考文献18

  • 1Agmon S, Douglis A, Nirenberg L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Comm Pure Appl Math, 1959, 12: 623-727.
  • 2Arioli G, Gazzola F, Grunau HC, Mitidieri E. A semilinear fourth order elliptic problem with exponential nonlinearity. SIAM J Math Anal, 2005, 36(4): 1226-1258.
  • 3Berchio E, Gazzola F. Some remarks on biharmonic elliptic problems with positive, increasing and convex nonlinearities. Electronic J DiffEq, 2005, 2005(34): 1-20.
  • 4Boggio T. Sull'equilibrio delle piastre elastiche incastrate. Rend Acc Lincei, 1901, 10: 197-205.
  • 5Brezis H, Cazenave T, Martel Y, Ramiandrisoa A. Blow up for ut- △u = g(u) revisited. Adv DiffEq, 1996, 1: 73-90.
  • 6Brezis H, Vazquez J L. Blow-up solutions of some nonlinear elliptic problems. Rev Mat Univ Complut Madrid, 1997, 10: 443-468.
  • 7Chandrasekhar S. An introduction to the study of stellar structure. New York: Dover,1967.
  • 8Crandall M C, Rabinowitz P H. Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems. Arch Ration Mech Anal, 1975, 58: 207- 218.
  • 9Davila J, Dupaigne L, Guerra I, Montenegro M. Stable solutions for the bilaplacian with exponential nonlinearity. SIAM J Math Anal, 2007, 39(2): 565-592.
  • 10Ferrero A, Grunau HC. The Dirichlet problem for supercritical biharmonic equations with power-type nonlinearity. J Differential Equations, 2007, 234: 582-606.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部