期刊文献+

非线性非高斯模型的高斯和滤波算法 被引量:16

Gaussian sum filtering methods for nonlinear non-Gaussian models
下载PDF
导出
摘要 通过将模型的状态噪声和观测噪声均表示成高斯和的形式,推导出非线性非高斯状态空间模型的高斯和递推算法,进一步提出了对应的扩展卡尔曼和滤波器(extended Kalman sum filter,EKSF)和高斯厄密特和滤波器(Gauss-Hermite sum filter,GHSF)。EKSF和GHSF分别用扩展卡尔曼滤波器(extended Kalman filter,EKF)和高斯厄密特滤波器(Gauss-Hermite filter,GHF)作为高斯子滤波器。分析的结果表明,现有的高斯和滤波算法是本文算法的特例;仿真结果表明,EKSF和GHSF能有效处理非线性非高斯模型的状态滤波问题,与高斯和粒子滤波器(Gaussian sum particle filter,GSPF)相比,EKSF和GHSF在保证精度的同时,大大降低了计算量,仿真时间分别约为GSPF的5%和6%。 The Gaussian sum recursive algorithms for nonlinear non-Gaussian state space models,on the assumption that the process and measurement noises are denoted by Gaussian-sums,is firstly deduced.And then the corresponding extended Kalman sum filter(EKSF) and the Gauss-Hermite sum filter(GHSF) are proposed,which use the extended Kalman filter(EKF) and Gauss-Hermite filter(GHF) as the Gaussian sub-filter respectively.The analysis shows that the existing Gaussian sum filtering algorithms are nothing but special cases of the deduced algorithm.The simulation results show that the proposed EKSF and GHSF can deal with the state estimation of the nonlinear non-Gaussian models effectively,and only consume about 5% and 6% of the computing time required by the Gaussian sum particle filter(GSPF),while the consistent filtering performance is kept.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2010年第12期2493-2499,共7页 Systems Engineering and Electronics
基金 国家02重大专项子课题(2009ZX02027-004) 国家高技术研究发展计划(863计划)(2009AA01A347)资助课题
关键词 信息处理 扩展卡尔曼和滤波器 高斯厄密特和滤波器 非线性非高斯模型 signal processing extended Kalman sum filter Gauss-Hermite sum filter nonlinear non-Gaussian model
  • 相关文献

参考文献25

  • 1Nordlund P J.Sequential Monte Carlo filters and integrated navigation[D].Linkoping:Swedish Linkoping University,2002.
  • 2Bergman N.Recursive Bayesian estimation navigation and tracking applications[D].Linkoping:Swedish Link ping University,1999.
  • 3秦永元,张洪钺,汪叔华.卡尔曼滤波与组和导航原理[M].西安:西安工业大学出版社,2004.
  • 4Bar-Shalom Y,Ii X R.Multitarget multisensor tracking:principles and techniques[M].YBS Publishing.1995.
  • 5Gordon N J,Salmond D J.Smith A F M.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEE Proc.of Radar and Signal,1993,140(2):107-113.
  • 6Steven M K.统计信号处理基础——估计与检测理论[M].罗鹏飞,译.北京:电子工业出版社,2003:416-417.
  • 7Julier S J.Uhlmann J K.A new extension of the Kalman filter to nonlinear systems[C] // The 11th International Symposium on Aerospace/Defence Sensing,Simulation and Controls,1997:182-193.
  • 8Julier S J,Uhlmann J K.Unscented filtenng and nonlinear estimation[J].Proc.of the IEEE,2004,92(3):401-422.
  • 9Kazufumi I.Xiong K Q Gaussian filters for nonlinear filtering problems[J].IEEE Trans.on Automatic control,2000,45(5):910-927.
  • 10Sorenson H W,Alspach D L.Recursive Bayesian estimation using Gaussian sums[J].Automatica,1971,7:465-479.

二级参考文献22

  • 1Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing, 2000 (10) : 197 - 208.
  • 2Doucet A. On sequential simulation-based methods for Bayesian filtering[R]. Technical report CUED/F-INFENG/TR 310, Cambridge University Engineering Department, 1998.
  • 3Mustiere F, Bolic M, Bouchard M. Rao-Blackwellised particle filters: examples of applications[C]//IEEE Canadian Conference on Electrical and Computer Engineering ( CCECE).Ottawa, Canada, 2006.
  • 4Doucet A, Freitas N, Gordon N J. Sequential Monte Carlo in practice[M]. New York : Springer, 2001.
  • 5Freitas N. Rao-blackwellised particle filtering for fault diagnosis[C]// IEEE Aerospace Conference Proceedings, 2002,4 : 1767 - 1772.
  • 6Julier S J, Uhlmann J K. A new extension of the Kalman filter to nonlinear systems[C]//Proc. of AeroSense : The l lth International Symposium on Aerospace/Defence Sensing, Simulation and Controls, SPIE, Orlando, Florida, USA, 1997:182- 193.
  • 7Merwe R, Doucet A, Freitas N, Wan E. The unscented particle filter[R]. Technicalreport CUED/F-INFENG/TR 380, Cambridge University Engineering Department, 2000.
  • 8Morelande M R, Ristic B. Reduced sigma point filtering for partially linear models[C]//ICASSP, 2006 : 37 - 40.
  • 9Mustiere F, Bolic M, Bouchard M. A modified Rao-blackwellised particle filter[C]//IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France, 2006:21 - 24.
  • 10Kay Steven M.统计信号处理基础--估计与检测理论[M].北京:电子工业出版社,2003.

共引文献21

同被引文献168

引证文献16

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部