摘要
在无穷维Banach空间中研究了一类不具有单调性的算子方程组u=F(u,v),v=G(v,u),其中F,G可以表示成F=F1+F2,G=G1+G2,F1,G1是混合单调的,F2,G2是反向混合单调的(F2≠0,G2≠0),得到了可解性定理.当P是正规极小锥时,通过构造一系列的确界迭代生成列,建立了解的非单调迭代算法.最后,推广了最大-最小解的概念,定义了极大-极小解,并且研究了其存在的条件.主要特点是不要求算子具有混合单调性,可以说从本质上推广了许多已知的结论.
This paper deals with a class of systems of operator equations u=F(u,v), v=G(v,u), Where F and G have the decomposition F=F 1+F 2,G=G 1+G 2,F 1,G 1 are mixed monotone, F 2,G 2 are anti mixed monotone. Via constructing a series of iteratively bound generated sequences, We not only obtain some existence results, but also establish nonmonotone iteration processes. As application we study the existence of solutions for a nonlinear system of integro differential equations with nonmonotone terms. Our conclusions generalize many well known results.
基金
国家自然科学基金