期刊文献+

基于局部特征的汽车识别 被引量:4

Feature Based on Recognition of Car
下载PDF
导出
摘要 提出了一种自动检测和识别汽车类型的方法。该方法分为两个阶段,首先,用Adaboost的学习算法检测图片中是否有正面的汽车并得到车辆的头部区域。第二,对车辆头部区域,提取SURF局部特征,并与数据库中的特征相匹配,跟据匹配的结果得到车辆的类型。在实验中,对821幅图片进行测试,其中包含48个不同类型的汽车,该算法正确识别率是81.6%。 In this paper;we present a method for automatic detection and recognition of car types.There are two main stages in this process:First,detect the car based on adaboost learning algorithm and get the region of car face.Second,recognition of the car based on SURF feature matching.In our experiment,the algorithm yielded a recognition rate of 81.6% when tested on about 800 images containing 48 different kinds of car type.
作者 黄灿
出处 《微型电脑应用》 2010年第8期51-52,56,共3页 Microcomputer Applications
关键词 ADABOOST SURF 局部特征 车辆检测 车辆识别 Adaboost SURF local feature car recognition
  • 相关文献

参考文献7

  • 1Lai A,Fung G,and Yung N.Vehicle type classification from visual-based dimension estimation.In IEEE Int.Transp.Syst.Conf.,pages 201-206,2001.
  • 2Petrovic V and Cootes T.Analysis of features for rigid structure vehicle type recognition.In BMVC,volume 2,pages 587-596,2004.
  • 3Rahati S,Moravejian R,Ehsan Mohamad Kazemi and Farhad Mohamad Kazemi.Vehicle Recognition Using Contourlet Transform and SVM,Proceedings of the Fifth International Conference on Information Technology:New Generations.
  • 4Dlagnekov L.Video-based car sttrveillance:License plate make and model recognition.Masters Thesis,University of California at San Diego 2005.
  • 5Lowe D.Distinctive image features from scale-invatiant keypomts,cascade filtering approach.IJCV 2004.
  • 6Viola P,and Jones M.Rapid object detection using a boosted cascade of simple features.CVPR2001.
  • 7Bay H,Tuytelaars T,and L Vam.Gool,SURF:Speeded up robust features.ECCV2006.

同被引文献40

  • 1晏世武,罗金良,严庆.基于卷积神经网络车型分类的研究[J].智能计算机与应用,2020,0(1):67-70. 被引量:3
  • 2Chen Li - Chih, et al. Vehicle Make and Model Recognition Using Symmetrical SUER[ C]// Advanced Video and Signal Based Sur- veillance (AVSS) , Krakow , 2013 10th IEEE International Confer- ence on, IEEE, 2013:472 - 477.
  • 3Sara Saravi, Eran A. Edirisinghe . Vehicle Make and Model Rec- ognition in CCTV Footage[ C]. Digital Signal Processing (DSP), 2013 18th International Conference on, IEEE, 2013:1 -6.
  • 4M Saquib Sarfraz, et al. Bayesian Prior Models for Vehicle Make and Model Recognition [ C ]. Frontiers of Information Technology ( FIT), Proceedings of the 6th International Conference on, IEEE, 2009.
  • 5Krishnan Ramnath, et al. Car Make and Model Recognition using 3D Curve Alignment [ C ]. Applications of Computer Vision ( WACV), 2014 IEEE Winter Conference on, IEEE, 2014:285 - 292.
  • 6H Bay, A Ess, T Tuytelaars, L Van Gool. Speeded - Up Robust Features(SURF) [J]. Computer Vision and Image Understanding, 2008,110(3) :346 -359.
  • 7N Dalai, B Triggs. Histograms of oriented gradients for human de- tection[ C]. IEEE Computer Society Conference on Computer Vi- sion and Pattern Recognition(CVPR), San Diego, CA, USA , June 25, 2005,1:886 - 893.
  • 8Tan Hengliang, Yang Bing, Ma Zhengming. Face recognition based on the fusion of g/obai and local HOG features of face images [J]. Computer Vision, 2014,8(3) : 224 -234.
  • 9Tan I-Iengliang, Yang Bing, Ma Zhengming. Face recognition based on the fusion of global and local HOG features of face ima- ges[ J]. Computer Vision, 2014,8 (3) : 224 - 234.
  • 10潘磊.基于集成学习的人脸识别算法研究[D].山东大学,2013.

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部