期刊文献+

求解二阶线性常微分方程的一个显式差分格式

An Explicit Difference Scheme to Solve A Second Order Linear Ordinary Differential Equation
下载PDF
导出
摘要 在求解常微分方程的方法中,有限差分法是使用最广泛的方法之一。考虑一个二阶线性常微分方程的边值问题,利用有限差分法,建立了一个具有二阶精度的显式差分格式。首先,通过讨论该显式差分格式的系数矩阵,证明了该显式差分格式解的存在性。然后,通过定义的3种不同范数之间的关系,证明了显式差分格式解的收敛性和稳定性。最后,通过计算机编程对实例的计算,验证了该显式差分格式的数值结果具有二阶精度,并且该显式格式数值结果绘制的图形稳定、光滑,与解析结果吻合较好。 Finite difference method is the one of the most widely used methods to solve ordinary differential equations. This paper conceives a boundary value problem of a second-order linear ordinary differential equations. By using the finite difference method, an explicit difference scheme with second-order accuracy has been set up. First, by discussing the coefficient matrix of the explicit difference scheme, we obtain the existence of solutions. Then, we define three norms in this paper to prove the convergence and stability of the solution. Finally, we apply the method to a concrete example with the help of computer, which verifies that the numerical results occupy the second-order accuracy. The graphic given by the numerical results is stable, smooth and in good agreement with the analytical results.
作者 杨韧 周钰谦
出处 《成都信息工程学院学报》 2010年第3期328-332,共5页 Journal of Chengdu University of Information Technology
关键词 计算数学 微分方程数值解法 差分格式 稳定性 收敛性 computational mathematics numerical method for partial differential equation difference scheme stability convergence
  • 相关文献

参考文献1

二级参考文献6

  • 1LU Jin-fu, GUAN Zhi. Numerical Solution of Partial Differential Equation[M]. Beijing: Qinghua University Press, 2004.
  • 2HU Jan-wei, TANG Huai-ming. Numerical Method of Differential Equation[M]. Beijing: Science Press, 2003.
  • 3TEMAM R. Inertial manifolds and multigrid methods[J]. SIAM J Math Anal, 1990, 21(1): 154-178.
  • 4CHEN Min, TEMAM R. Incremental unknowns for solving partial differential equations[J]. Numer Math, 1991, 59(3): 255-271.
  • 5FRANCOIS Pouit. Stability study, error estimation, and condition number for semi-implicit schemes using incremental unknowns[J]. Numerical Methods for Partial Differential Equation, 1996, 12: 743-766.
  • 6CHEN Min, TEMAM R. Nonlinear Galerkin method in the finite difference case and wavelet-like incremental unknowns[J]. Numer Math, 1993, 64: 271-294.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部