摘要
在泛函分析中有着重要作用的Hahn-Banach扩张定理及其很多推广定理的条件都要求值域空间是Dedekind完备的,这是一个非常强的条件,因而在一定程度上局限了这些扩张定理的应用。主要考虑弱化这些定理的条件,讨论当值域空间是由锥引入序的非Dedekind完备的序拓扑向量空间时,一类集值映射的扩张。
In functional analysis, the classical Hahn-Banach extension theorem and most of its generalization play a very important role on condition that the value space must be a Dedekind complete vector space. In this paper, we also show that a extension theorem concerning set-valued mapping that the value space is a partially ordered topological vector space which the order is induced by cone but not a Dedeking complete vector space.
出处
《成都信息工程学院学报》
2010年第3期336-340,共5页
Journal of Chengdu University of Information Technology
关键词
基础数学
泛函分析
序拓扑向量空间
集值映射
锥一凸
上(下)半连续
fundamental mathematics
functional analysis
partially ordered topological vector spaces
set-valued mapping
cone-covex
upper (lower)-continuous