期刊文献+

不同宽度锯齿型石墨烯纳米带的第一原理研究 被引量:2

A research on the first-principle of zigzag graphene nanoribbons (ZGNRs) with various widths
下载PDF
导出
摘要 采用第一原理密度泛函理论,研究了不同宽度边缘饱和(氢原子)一维石墨片纳米带的电学性质。研究表明:对于所有宽度锯齿型纳米带,其几何结构和电子结构与碳纳米带的宽度密切相关。这为揭示纳米带尺寸效应提供了一条切实可行的道路。 In this paper,we study the electronic properties of edge-hydrogenated zigzag graphene nanoribbons(ZGNRs) with various widths based on the frst-principle of density functional theory. Our calculation shows that the geometry and electric structure of ZGNRs are in close relation to width,which provides a practical way for revealing nanoribbons' size effect.
机构地区 长春大学理学院
出处 《长春大学学报》 2010年第12期63-65,共3页 Journal of Changchun University
基金 吉林省教育厅科研项目[吉教科合字(2009)第441号]
关键词 密度泛函理论 石墨烯纳米带 电子结构 density functional theory graphene nanoribbons electronic structure
  • 相关文献

参考文献10

  • 1K.S.Novoselov,A.K.Geim,S.V.Morozov.Firsov[J].Science,2004,306:666.
  • 2A.K.Geim,K.S.Novoselov[J].Nature Mater,2007(6):183.
  • 3D.W.Boukhvalov,M.I.Katsnelson[J].Nano Lett,2008(8):4373.
  • 4Y.W.Son,M.L.Cohen,S.G.Louie[J].Phys.Bey.Lett.2006,97:216803.
  • 5C.Q.Sun[J].Nanoscale,2010(2):1930.
  • 6O.Hod,V.Barone,G.E.Scuseria[J].Phys.Bey.2008(77):035411.
  • 7B.Huang,Q.M.Yan,G.Zhou.J.seuseria[J].Appl.Phys.Lett,2007(91):253122.
  • 8S.S.Yu,Q.B.Wen,W.T.Zheng.scuseria[J].Mol.Simul.2008(34):1085.
  • 9V.Barone,O.Hod,G.E.Scuseria[J].Nano Lett,2006(6):2748.
  • 10J.P.Perdew,K.Burke,M.Ernzerhof[J].Phys.Rey.Lett,1996(77):3865.

同被引文献21

  • 1A.K,Geim,K.S,Novoselov.The rise of graphene[J].Nature Mat,2007 (6):183-191.
  • 2M.I.Katsnelson.Graphene:carbon in two dimensions[J].Materials Today,2007(10):20-27.
  • 3A.H.Castro Neto,F.Guinea,N.M.R.Peres,A.K.Geim.The electronic properties of graphene[J].Rev Mod Phys,2009(81):109-162.
  • 4B.Huard,J.A.Sulpizio,N.Stander,et al.Transport Measurements Across a Tunable Potential Barrier in Graphene[J].Phys Rev Lett,2007(98):236803-236806.
  • 5E.V.Castro,K.S.Novoselov,S.V.Morozov,et.al.Biased Bilayer Graphene:Semiconductor with a Gap Tunable by the Electric Field Effect[J].Phys Rev Lett,2007(99):216802 -216805.
  • 6J.B.Oostinga,H.B.Heersche,Xinglan Liu,et.al.Gate-induced insulating state in bilayer grapheme devices[J].Nature Mat,2008(7):151-157.
  • 7M.Y.Han,B.Ozyilmaz,Y.Zhang,et.al.Energy Band-Gap Engineering of Graphene Nanoribbons[J].Phys.Rev.Lett,2007(98):206805-206808.
  • 8L.Tapaszto,C.Dobrik,P.Lambin,et al.Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography[J].Nature Nanotechnology,2008(3):397-401.
  • 9L.Y.Jiao,L.Zhang,X.Wang,et al.Narrow graphene nanoribbons from carbon nanotubes[J].Nature,2009(458):877-880;.
  • 10X.T.Jia,M.Hofmann,V.Meunier,et al.Controlled Formation of Sharp Zigzag and Armchair Edges in Graphitic Nanoribbons[J].Science,2009(323):1701 -1705.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部