期刊文献+

基于自适应差分进化算法的间歇反应动态优化求解 被引量:2

Dynamic Optimization of Batch Reactor Based on Self-adaptive Differential Evolution Algorithm
下载PDF
导出
摘要 为了求解间歇反应动态优化问题,提出了一种自适应差分进化算法(Self-Adaptive Differential Evolution,SADE)。在SADE算法中,每个个体都拥有自己的控制参数。该算法在对原优化问题进行差分进化搜优的同时,以权重大小来评价各个控制参数的优劣,并以加权控制参数作为控制参数的进化方向,实现其自适应调整。结果表明SADE算法收敛速度快、求解精度高。将SADE算法应用于两个典型的间歇反应动态优化问题中,取得了较好的优化效果;同时,分析了时间离散度对优化结果的影响。 An self-adaptive differential evolution algorithm(SADE) is introduced to solve the dynamic optimization problem of batch reactor.In SADE,each original individual has its own control parameters.Differential evolution operator is employed to search the optimization problems,and the values of weight are applied for evaluating the corresponding control parameters.Meanwhile,the weighted control parameters are used as the evolution direction of adaptively adjusting the control parameters.The experimental results show that SADE is of higher precision and fast convergence.Finally,SADE is applied for two typical dynamic optimization problems of batch reactor,and some better optimization results are obtained.Furthermore,the effect of the discrete-time degree on the optimization solution is also analyzed.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第6期832-838,共7页 Journal of East China University of Science and Technology
基金 国家自然科学基金(20776042) 国家863项目(2007AA04Z164) 教育部博士点基金(20090074110005) 上海市曙光计划(09SG29) 上海市重点学科建设项目(B504)
关键词 差分进化算法 协进化 间歇反应 动态优化 differential evolution algorithm co-evolution batch reaction dynamic optimization
  • 相关文献

参考文献13

  • 1蒲黎明,俞欢军,陈德钊.连续多蚁群算法的构建及其在过程动态优化中的应用[J].高校化学工程学报,2008,22(5):871-876. 被引量:6
  • 2Zhang Bing, Chen Dezhao, Zhao Weixiang. Iterative antcolony algorithm and its application to dynamic optimization of chemical process[J]. Computers and Chemical Engineering, 2005, 29(10): 2078 2086.
  • 3Rajesh J, Gupta K, Kusumakar H S, et al. Dynamic optimi zation of chemical processes using ant colony framework[J]. Computers and Chemistry Engineering, 2001,25 (6) : 583-595.
  • 4Pham Q T. Dynamic optimization of chemical engineering processes by an evolutionary method [J]. Computers and Chemical Engineering, 1998, 22(7) : 1089-1097.
  • 5Babu B V, Angira R. Modified differential evolution (MDE) for optimization of nonlinear chemical processes [ J ]. Computers and Chemical Engineering, 2006, 30 (6-7): 989- 1002.
  • 6Storn R, Price K. Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997,11 : 341-359.
  • 7Abbass H. The self-adaptive pare to differential evolution algorithm[C]// Proceedings of the IEEE Congress on Evolutionary Computation. USA:IEEE, 2002: 831-836.
  • 8Liu J, Lampinen J. A fuzzy adaptive differential revolution algorithm [C] // Proceedings of the IEEE International Region 10 Conference. USA:IEEE, 2002.. 606-611.
  • 9Omar S S, Lam T B, Hussein A A. The effect of a stochastic step length on the performance of the differential evolution algorithm [C] // IEEE Congress on Evolutionary Computation. Singapore: IEEE, 2007:2850 2857.
  • 10Zhang J Q, Sanderson A C. JADE: Adaptive differential evolution with optional external archive [J]. IEEE Transactions on Evolutionary Computation, 2009, 13 (5) : 945-958.

二级参考文献12

  • 1张兵,俞欢军,陈德钊.序贯优化化工动态问题的蚁群算法[J].高校化学工程学报,2006,20(1):120-125. 被引量:15
  • 2Luus R. On the application of iterative dynamic programming to singular optimal control problems [J]. IEEE Transactions on Automatic Control, 1992, 37 (11): 1802-1806.
  • 3Dorigo M, Stutzle T. Ant Colony Optimization [M]. Cambridge MA: The M1T Press, 2004.
  • 4CHENG Zhi-gang(程志刚).Research of Continuous Ant Colony Optimization Algorithm and its Application in Chemical Engineering(连续蚁群优化算法的研究及其化工应用)[D].Hangzhou(杭州):Zhejiang University(浙江大学),2005.
  • 5Park S, Ramirez W F. Optimal production of secreted protein in fed-batch reactors [J]. AIChE Journal, 1988, 34(9): 1550-1558.
  • 6Tholuder A, Rarnirez W F. Obtaining smoother singular arc policies using a modified itemtive dynamic programming algorithm [J]. International Journal of Control, 1997, 68(5): 1115-1128.
  • 7Balsa-Canto E, Banga J R. Efficient optimal control ofbioprocesses using second-order information [J]. Ind Eng Chem Res, 2000, 39(11): 4287-4295.
  • 8Sarkar D, Modak J M. ANNSA: A hybrid artificial neural network/simulated annealing algorithm for optimal control problems [J]. Chemical Engineering Science, 2003, 58(14): 3131-3142.
  • 9Irizarry R. A generalized framework for solving dynamic optimization problems using the artificial chemical process paradigm: Applications to particulate processes and discrete dynamic systems [J]. Chemical Engineering Science, 2005, 60(21): 5663-5681.
  • 10Lee J, Ramirez W F. Optimal fed-batch control of induced foreign protein produced by recombinant bacteria [J]. AIChE Journal, 1994, 40(5): 899-907.

共引文献5

同被引文献32

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部