期刊文献+

基于支持向量机的实时表情识别

Real Time Facial Expression Recognition Based on SVM
下载PDF
导出
摘要 从实时图像中识别面部表情和推断情感是一个极具挑战性的研究课题。文章介绍了一种根据视频图像对面部表情进行实时识别的方法。使用ASM方法和改进的L-K光流算法进行面部特征定位和特征跟踪,提取的面部特征位移作为支持向量机分类器的输入。实验证明,支持向量机和特征跟踪的方法能很好地识别面部表情。 Enabling computer systems to recognize facial expressions and infer emotions from them in real time presents a challenging research topic. In this paper, real time approach to recognize facial expression is present in live video.We employ ASM method and an improved L-K optical flow algorithm to perform face localization and feature tracker.The facial feature displacements are used as input to a Support Vector Machine classifier. Our experiments demonstrate the effectiveness of a support vector machine and feature tracking approach to facial expressions recognition.
出处 《微型电脑应用》 2010年第6期8-10,1,共3页 Microcomputer Applications
关键词 面部表情 支持向量机 特征跟踪 特征位移 Facial Expression Support Vector Machines Feature Tracking Feature Displacements.
  • 相关文献

参考文献8

  • 1Donato G,Barlett M S,Hager J C,Ekman P,Sejnowski T J."Classifying Facial Actions",IEEE Trans.Pattern Analysis and Machine Intelligence,Vol.21,No.10.974-989,1999.
  • 2Cootes T F,Taylor C J,Cooper D H,and Haslam J.Training Models of Shape from Sets of Examples,in Proc.British Machine Vision Conference.Sprmger-Verlag,1992.9-18.
  • 3Cootes T E Taylor C J,Cooper D H,and Graham J,"Active Shape Models-Their Training and Application",Computer Vision and Image Understanding,61(I),1995.38-59.
  • 4Jean-Yves Bouguet.Pyramidal implementation of the Lucas Kanade feature tracker.Technical Report,Intel Corporation,Microprocessor Research Labs 2000.
  • 5Vapnik V.The Nature of Statistical Learning Theory.New York:Springer-Verlag 1995.
  • 6邓乃扬,田英杰.数据挖掘中的新方法-支持向量机[J].科学出版社.2006.
  • 7郑勇涛,刘玉树.支持向量机解决多分类问题研究[J].计算机工程与应用,2005,41(23):190-192. 被引量:51
  • 8Kanada T,Colin J,and Tian Y.Comprehensive database for facial expression analysis.In Proceedings of the 4th IEEE International Conference on Automatic Face and Gesture Recognition (FG'00),46-53,2000.

二级参考文献6

  • 1李国正 王蒙 曾华军译.支持向量机导论[M].北京:电子工业出版社,2004-03..
  • 2Vladimir N Vapnik.An Overview of Statistical Learning Theory[J]. IEEE Transactions on Neural Networks, 1999; 10(5) :988-999.
  • 3Hsu C-W,Lin C-J.A Comparison of Methods for Muhiclass Support Vector Machine[J].lEEE Transactions on Neural Networks,2002; (13) : 415-425.
  • 4Boonserm Kijsirkul,Nitiwut Ussivakul.Muhiclass Support Vector Machines Using Adaptive Directed Acyclic Graph[C].In:IEEE/INNS International Joint Conference on Neural Networks( IJCNN-2002 ), 2002 : 980-985.
  • 5Vojtech Franc,Vaclav Hlavac.Muhi-class Support Vector Machine [C].In:16th International Conference on Pattern Recognition(lCPR'02), 2002 : 236-239.
  • 6张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2264

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部